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The matching law describes the tendency of agents to match the ratio of choices allocated to the ratio of rewards received
when choosing among multiple options (Herrnstein, 1961). Perfect matching, however, is infrequently observed. Instead,
agents tend to undermatch or bias choices toward the poorer option. Overmatching, or the tendency to bias choices toward
the richer option, is rarely observed. Despite the ubiquity of undermatching, it has received an inadequate normative justifi-
cation. Here, we assume agents not only seek to maximize reward, but also seek to minimize cognitive cost, which we formal-
ize as policy complexity (the mutual information between actions and states of the environment). Policy complexity measures
the extent to which the policy of an agent is state dependent. Our theory states that capacity-constrained agents (i.e., agents
that must compress their policies to reduce complexity) can only undermatch or perfectly match, but not overmatch, consist-
ent with the empirical evidence. Moreover, using mouse behavioral data (male), we validate a novel prediction about which
task conditions exaggerate undermatching. Finally, in patients with Parkinson’s disease (male and female), we argue that a
reduction in undermatching with higher dopamine levels is consistent with an increased policy complexity.
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Significance Statement

The matching law describes the tendency of agents to match the ratio of choices allocated to different options to the ratio of
reward received. For example, if option a yields twice as much reward as option b, matching states that agents will choose
option a twice as much. However, agents typically undermatch: they choose the poorer option more frequently than expected.
Here, we assume that agents seek to simultaneously maximize reward and minimize the complexity of their action policies.
We show that this theory explains when and why undermatching occurs. Neurally, we show that policy complexity, and by
extension undermatching, is controlled by tonic dopamine, consistent with other evidence that dopamine plays an important
role in cognitive resource allocation.

Introduction
Over half a century ago, Richard Herrnstein discovered an
orderly relationship between choices and rewards (Herrnstein,
1961), which he termed “matching” behavior. Herrnstein’s
matching law describes the tendency of animals to “match” the
ratio of choices allocated to the ratio of reward received when
choosing among multiple options. For two options, matching is
defined by the following:

Ca

Ca þ Cb
¼ Ra

Ra þ Rb
and

Cb

Ca þ Cyb
¼ Rb

Ra þ Rb
; (1)

where Ca is the number of choices allocated to option a and Ra

is the number of rewards obtained from option a. The matching
law describes choice behavior fairly accurately in a number of
animals, including pigeons (Herrnstein, 1961; de Villiers and
Herrnstein, 1976; Baum, 1979; Mazur, 1981; Villarreal et al.,
2019), mice (Gallistel et al., 2007; Fonseca et al., 2015; Bari et
al., 2019), rats (Graft et al., 1977; Gallistel, 1994; Belke and
Belliveau, 2001; Gallistel et al., 2001; Lee et al., 2017), monkeys
(Anderson et al., 2002; Sugrue et al., 2004; Lau and Glimcher,
2005; Kubanek and Snyder, 2015; Tsutsui et al., 2016; Soltani et
al., 2021), and humans (Schroeder and Holland, 1969; Pierce
and Epling, 1983; Beardsley and McDowell, 1992; Savastano
and Fantino, 1994; Vullings and Madelain, 2018; Cero and
Falligant, 2020). A closer look reveals systematic deviations from
matching in many of these articles, which we expand on below.
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Perfect matching, however, is only seen infrequently.
Theoretically, animals can deviate from perfect matching by
undermatching, biasing choices toward the poorer option,
or by overmatching, biasing choices toward the richer option
(Baum, 1974). Empirically, animals systematically undermatch
(Baum, 1974; Myers and Myers, 1977; Baum, 1979; Wearden
and Burgess, 1982). Overmatching is rarely observed. This sys-
tematic bias toward undermatching has received a number of
explanations, including mistuned learning rules (Loewenstein
and Seung, 2006; Loewenstein, 2008), procedural variation in
tasks (Baum, 1979; Williams, 1985), the inability to detect the
richer stimulus/action (Baum, 1974), behavioral bursts (Wearden,
1983), poor credit assignment (Trepka et al., 2021), inappropriate
choice stochasticity (Trepka et al., 2021), noise in neural mecha-
nisms of decision-making (Soltani et al., 2006), synaptic plasticity
rules (Iigaya and Fusi, 2013), belief in environmental volatility
(Saito et al., 2014), and optimal decision-making under uncer-
tainty (Iigaya et al., 2019). Here, we extend a framework with
broad explanatory power to provide a normative rationale for
undermatching and furnish novel predictions that we test.

We begin with the premise that agents seek to simultaneously
maximize reward and minimize some measure of cognitive cost,
which we formalize as policy complexity, the mutual information
between states and actions (Parush et al., 2011; Gershman, 2020;
Lai and Gershman, 2021). The policy pðajsÞ corresponds to the
probabilistic mapping between environment states (s) and
actions (a). Because policy complexity is a lower bound on the
number of bits needed to store a policy in memory, more com-
plex policies necessitate more bits. If the optimal policy exceeds
the memory capacity of an agent, then it will need to “compress”
its policy by reducing complexity. In this article, we argue that
undermatching is a consequence of policy compression.

We first extend the notion of policy complexity to describe
matching behavior. We find that agents should only perfectly
match or undermatch, but never overmatch, since overmatching
requires more memory than perfect matching and yields less
reward. We validate a novel prediction that capacity-constrained

agents should increase undermatching on task variants that
demand greater policy complexity for perfect matching behavior.
We then test an implication of the hypothesis that tonic dopamine
signals average reward (Niv et al., 2007) and thereby controls the
allocation of cognitive effort (Mikhael et al., 2021). When tonic
dopamine is higher, individuals should adopt higher policy
complexity, as if their capacity limit had effectively increased.
We find evidence for this hypothesis using data from patients
with Parkinson’s disease performing a dynamic foraging task
on and off dopaminergic medication (Rutledge et al., 2009):
undermatching was reduced on medication compared with off
medication. Together, our results support a policy compression
account of undermatching.

Materials and Methods
Behavioral data. We reanalyzed data from mice (Bari et al., 2019)

and human subjects (Rutledge et al., 2009) performing a dynamic forag-
ing task (differences between the mouse and human versions of the task
are detailed below). In this task, subjects chose between two options,
each of which delivered reward probabilistically. The “base” reward
probabilities of each option remained fixed within a given block, and
changed between blocks. Block transitions were uncued. A key feature of
the dynamic foraging task was the baiting rule, which stipulated that the
longer an agent has abstained from choosing a particular option, the
greater the probability of reward on that option. Stated another way, if
the unchosen option would have been rewarded, the reward was deliv-
ered the next time that option was chosen. The baiting rule was designed
to mimic ecological conditions, where abstaining from a foraging option
will allow that option to replenish reward. Mathematically, the baiting
probability took the following form:

Pa ¼ 1� ð1� paÞtaþ1
; (2)

where pa is the base reward probability for option a, ta is the number of
consecutive choices since that option was last chosen, and Pa is the prob-
ability of reward when the agent next chooses that option (Fig. 1A, illus-
tration). The baiting rule applies to both datasets.

0 1 2 3 4 5 6 7 8 9 10
ta

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
P(choice to option a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Av
er

ag
e 

re
w

ar
d

0 0.2 0.4 0.6 0.8 1
P(choice to option a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Av
er

ag
e 

re
w

ar
d

A CB

0.7

0.4

0.05

0.1

VI/VI task VI/VR task

P a

Figure 1. Geometric representation of matching behavior in different task conditions. A, The baiting rule for four different values of pa (base reward probabilities). The x-axis is ta, the num-
ber of consecutive choices since that option was last chosen, and the y-axis is pa, the probability of reward. Here, Pa [ {0.05, 0.1, 0.4, 0.7}. Adapted from Huh et al. (2009). B, In VI/VI tasks,
where both options use the “baiting” rule, matching emerges as the optimal probabilistic policy. Matching occurs where ra = rb (hence they match). C, VI/VR tasks allow us to disambiguate
whether animals match or whether they approximate the optimal probabilistic solution. In these task variants, one option (here, option b) follows a VI schedule (i.e., programmed with the
baiting rule) and the other option (here, option a) follows a VR schedule (standard probabilistic reward delivery). The matching policy (where ra = rb) differs from the optimal probabilistic pol-
icy. Adapted from Bari and Cohen (2021).
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In the mouse dynamic foraging task, male C57BL/6J mice (age range,
6–20weeks; catalog #000664, The Jackson Laboratory) were surgically
implanted with a head plate in preparation for head fixation. After re-
covery, these animals were water restricted and habituated. Cues were
delivered in the form of odors via a custom-made olfactometer (Cohen
et al., 2012). Animals received one of two cues, selected pseudorandomly
on each trial, for 0.5 s. The first odor (presented on 95% of trials) was a
“go cue,” after which mice made a leftward or rightward lick toward a
custom-built “lick port.” The second odor (presented on 5% of trials) was
a “no-go cue.” Licks after this cue were neither rewarded nor punished. If
a lick was emitted within 1.5 s of cue onset, reward was delivered probabil-
istically. Intertrial intervals (ITIs) were drawn from an exponential distri-
bution with a rate parameter of 0.3, with a maximum of 30 s. This resulted
in a flat ITI hazard function, ensuring that expectation about the start of
the next trial did not increase over time (Luce, 1986). The mean ITI was
7.1 s. Miss trials (go cue trials with no response) were rare (,1% of all tri-
als). To minimize spontaneous licking, we enforced a 1 s no-lick window
before odor delivery. Licks within this window were punished with a new
randomly generated ITI, followed by a 2.5 s no-lick window.

We included data from three task variants. In the “40/10” task vari-
ant, the base reward probabilities switched between {0.4/0.1} (corre-
sponding to base reward probabilities for the left and right option)
and {0.1/0.4}. This corresponds to a task with two possible states. A simi-
lar logic applied to the “40/5” task variant. In the “multiple probability”
task variant, the base reward probabilities were chosen from the set {0.4/
0.05, 0.3857/0.0643, 0.3375/0.1125, 0.225/0.225, 0.1125/0.3375, 0.0643/
0.3857, 0.05/0.4}, which corresponds to a task with seven possible states.
We included 30 mice total, 10 of which performed the 40/10 task for 236
total sessions, 17 of which performed the 40/5 task for 325 total sessions, and
9 of which performed the multiple probability task for 70 sessions. Animals
completed 121–830 trials per session, with a median of 362. Block lengths
were drawn from a uniform distribution that spanned a maximum range of
40–100 trials. For full details, we refer readers to the study Bari et al. (2019).

In the human dynamic foraging task, subjects performed a similar
task with the following four possible states: {0.257/0.043, 0.225/0.075,
0.075/0.225, 0.043/0.257}. This dataset included 26 healthy young sub-
jects (14 females, 12 males), 26 healthy elderly control subjects (12
females, 14 males), and 26 patients with idiopathic Parkinson’s disease
(12 females, 14 males) who performed the task both off and on dopa-
minergic medications (order counterbalanced across patients). During
“off-medication” sessions, patients withheld taking all dopaminergic
medications for at least 10 h (mean, 14.4 h). During “on-medication”
sessions, patients were tested an average of 1.6 h after receiving dopa-
minergic medications. All subjects were prescribed L-DOPA, and the
majority (n= 17) were also taking a D2 receptor agonist (pramipexole,
pergolide, or ropinirole). Patients had scores of 2 or 2.5 on the Hoehn–
Yahr scale of motor function, indicating that they were in mild to mod-
erate stages of the disease (Hoehn and MD, 1967). Subjects were
trained by reading task instructions and answering five multiple-choice
questions to ensure they had a basic understanding of the task. They
then completed five separate blocks of 40 trials (for a total of 200 trials)
with base reward probabilities fixed within each block. On each trial,
subjects chose a red or green stimulus. After each block, subjects were
given feedback about which option was the richer option. After train-
ing, subjects performed 800 trials in 10 blocks of 70–90 trials. Subjects
had unlimited time to make each choice, but typically completed 800
trials within 30min. We excluded one patient with Parkinson’s disease
who did not complete all trials on an on-medication session. For full
details, we refer readers to Rutledge et al. (2009).

Theoretical framework. We model an agent that can take actions
(denoted by a) and visit states (denoted by s). Agents learn a policy
pðajsÞ, a probabilistic mapping from states to actions. Technically, states
are defined as a representation of the information needed to predict
reward (Sutton and Barto, 2018). Based on this definition, the correct
state for the dynamic foraging task would need to include more informa-
tion than what we have included in our specification of task states given
earlier. Specifically, task states correspond to the different baiting proba-
bilities that appear repeatedly in the task, switching after a random num-
ber of trials. Because the task state is not directly observable by the agent,

the state representation would need to include the sufficient statistics for the
posterior probability distribution over the task state. In addition, it would
need to include ta, the number of consecutive choices since option a was
last chosen. These requirements significantly complicate the analysis of
the optimal policy; moreover, it is doubtful that mice and humans keep
accurate track of all this information at the same time.

Our model is predicated on the assumption that subjects represent a
simpler state representation consisting only of the task state. Although the
task state is in fact unobservable, we restrict our analysis to behavior dur-
ing “steady state” (after the first 20 trials postswitch), during which time it
is plausible that subjects have relatively little task state uncertainty. This
was empirically chosen, as 20 trials is sufficient to exclude behavior that
has not yet reached steady state (Rutledge et al., 2009, their Fig. 3B; Bari et
al., 2019, their Fig. 1D). The assumption that subjects neglect ta (i.e., that
they either do not track their choice history or do not use it in their state
representation) is more drastic, but it is nevertheless common in many
models of matching, and has some empirical support (Nevin, 1969, 1979;
Heyman, 1979), though the evidence is equivocal (Shimp, 1966; Silberberg
et al., 1978). Further evidence against response counting is discussed later.
In summary, we assume that agents represent the task state (number of
pairs of base probabilities) and ignore the baiting rule.

Policy complexity is the mutual information between states and
actions, as follows:

Ip ðS;AÞ ¼
X
s

PðsÞ
X
a

pðajsÞlogpðajsÞ
PðaÞ ; (3)

where PðaÞ ¼
X
s

PðsÞpðajsÞ is the marginal action probability. A key

assumption underlying our formulation of the optimal policy is that
agents are capacity constrained (i.e., there is an upper bound, C, on pol-
icy complexity). Stated another way, agents must compress the optimal
policy if they lack the memory resources to store it. We therefore define
a joint optimization problem where agents seeks to maximize reward
subject to a capacity constraint. We define the optimal policy as follows:

p � ¼ argmax
p

Vp ; subject to Ip ðS;AÞ � C; (4)

where Vp is the value (average reward) under policy p . Note that we
allow the agent to ignore unnecessary information to maximize reward, so
more information can never corrupt performance. This does not mean
that an agent discards task-irrelevant information from storage entirely,
simply that this information is not used to generate the optimal policy.

The value is given by the following:

Vp ¼
X
s

PðsÞ
X
a

pðajsÞQp ðs; aÞ; (5)

where Qp(s, a) is the average reward for taking action a in state s.
For the dynamic foraging task, the expected reward for choosing

action a is obtained by marginalizing over ta:

Qp ðs; aÞ ¼ pðajsÞ
X1
ta¼0

½1� pðajsÞ�ta ½1� ð1� paÞtaþ1�

¼ pa
pðajsÞ þ pa½1� pðajsÞ� :

(6)

We will sometimes use the shorthand ra to denote the expected
reward for choosing action a. Because task states and actions are both
marginally equiprobable, we assume in our analyses that P(s) = 1/N
(whereN is the number of task states) and P(a) = 1/2.

Data analysis. Following convention, we defined undermatching by
fitting the following function

log2
Ca

Cb

� �
¼ a � log2

Ra

Rb

� �
þ b; (7)
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where Ca, Cb, Ra, and Rb correspond to the total
choices and rewards in an individual block. We
report a, where a= 1 is perfect matching, a, 1 is
undermatching, and a. 1 is overmatching (Baum,

1974). In calculating log2
Ra

Rb

� �
, we excluded blocks

with Ra = 0 or Rb = 0. For both mouse and human
datasets, we excluded trials 1–20 following each
block transition to allow behavior to stabilize.

To construct the empirical reward–complexity
curves, in both datasets, we computed the average
reward and mutual information between states and
actions for each session. We estimated mutual infor-
mation by computing the empirical action frequencies
for each state for each session. Although there are
numerousmethods for computingmutual information,
we found that using the empirical action frequencies
for each state gave reasonably good performance, likely
given the large number of trials, limited states, and lim-
ited number of actions in each state.

To determine the effect of policy complexity on
false alarm rates for the mouse dataset, we calculated
a logistic regression predicting false alarm as a func-
tion of policy complexity. To determine the effect of
dopaminergic medications on perseveration, we cal-
culated the following logistic regression for the
Parkinson’s disease dataset, as follows:

log
PðcrðtÞÞ

1� PðcrðtÞÞ
� �

¼
X5

i¼1

b r
i ðrrðt � iÞ � rgðt � iÞÞ

þ b ccrðt � 1Þ þ b 0;

(8)

where cr(t) = 1 for a choice to the red target and 0 for a choice to the
green target, rr(t) = 1 if the red target delivered reward and 0 otherwise,
rg(t) = 1 if the green target delivered reward, and 0 otherwise. We
included an interaction term indicating whether data were from the on-
medication versus off-medication sessions, and report b C for this inter-
action, which quantifies how perseveration (the tendency to repeat the
same choice) changes as a function of dopaminergic medication.

In performing all paired and unpaired statistical tests, we first per-
formed a Lilliefors test, which tests the null hypothesis that the data are
normally distributed. In all cases, the null hypothesis was rejected, and
we subsequently performed nonparametric testing, either the Wilcoxon
rank-sum test (for independent samples) or the Wilcoxon signed-rank
test (for paired samples).

Data availability. All code and data to reproduce the analyses in this
article can be obtained at https://github.com/bilalbari3/undermatching_
compression.

Results
Matching is an optimal probabilistic policy in variable-
interval/variable-interval tasks
To understand how policy compression leads to undermatching,
we must first understand matching behavior, the task conditions
that generate matching behavior, and what matching implies
about state representations of the brain. We have developed a
number of these arguments previously and repeat them here for
clarity (Bari and Cohen, 2021).

Task conditions are critical for observing matching behav-
ior. Most studies use “variable interval” (VI) reward schedules.
In these tasks, reward is available at an option after a variable
number of choices has been made (in discrete choice tasks).
Once the requisite number of choices has been made, that
option is “baited,” guaranteeing reward delivery when it is next

chosen. The reward is not physically present, but will be deliv-
ered when that option is next chosen. The baiting rule takes the
form shown in Equation 2. To gain an intuition, if the probabil-
ity of reward on the unchosen option increases the longer it has
been left unchosen, it makes sense to occasionally probe it to
harvest-baited rewards. The logic of this task rule is to mimic har-
vesting conditions where abstaining from a resource allows that
resource to replenish. Concretely, imagine pa ¼ 0:1; pb ¼ 0:4
and the animal repeatedly chooses option b. On the first trial,
Pa = 0.1 and Pb = 0.4. After option b is chosen once, Pa ; 0.19.
After option b is chosen twice in a row, now Pa ; 0.27. As this
continues, Pa approaches 1. After option a is chosen, Pa then
resets to 0.1 and Pb = 0.64 since it has not been chosen for one
trial. Figure 1A demonstrates the baiting rule for different values
of pa.

In tasks where both options follow VI reward schedules (so-
called VI/VI tasks), matching is the optimal probabilistic policy
for state representations that ignore ta (Eq. 2). Rewriting

Equation 1, matching occurs when
Ra

Ca
¼ Rb

Cb
. This simply states

that matching occurs when the expected reward obtained from
each option is equal. Figure 1B provides a geometric intuition for
matching, which occurs when ra and rb cross one another (in this
case, when pa ; 0.86). A normative explanation is therefore that
matching behavior is the best probabilistic behavior animals can
exhibit to harvest reward.

Matching is generally a suboptimal probabilistic policy and
implies animals are unaware of baiting
A key insight into understanding why matching behavior arises
came from the study by Sakai and Fukai (2008b). To implement
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Figure 2. Rats are systematically biased toward undermatching instead of the optimal probabilistic policy. A, In the
study by Williams (1985), rats performed 6 different VI/VR task variants. Each black line demonstrates V p for each
task variant. Overlaid on each V p line are X symbols for the optimal solution, O symbols for the matching solution,
and filled orange circles for the empirical behavior. Rats were consistently closer to matching than to maximizing, and
demonstrated a significant degree of undermatching. Because a choice of the VI option resulted in a 6 s time-out, we
approximated the reward probability of the VI option by 6/t , where t is the mean reward time under the VI sched-
ule. The schedules are defined as follows, where each number corresponds to pi, the base reward probability. VI/VR,
from top to bottom: (0.07, 0.5), (0.07, 0.15), (0.07, 0.08). B, VI/VR, from top to bottom: (0.2, 0.15), (0.07, 0.15),
(0.02, 0.15).
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the optimal probabilistic policy, an agent needs to understand
how adjusting the parameters of its policy changes behavior (a
relatively easy problem) and how changing this policy modifies
the environment (a much harder problem). If an agent ignores
the change in the environment, then matching behavior emerges.
In other words, matching occurs because agents ignore the bait-
ing rule (i.e., behave as if their actions do not change reward
probabilities). Because of this, generally speaking, matching is
not the optimal probabilistic policy.

In VI/VI tasks, matching fortuitously corresponds to the opti-
mal probabilistic policy, and we therefore cannot use this task to
conclude whether agents are aware of the baiting rule. The criti-
cal test is an experiment in which matching is not the optimal
strategy. For example, if one option follows a VI schedule (i.e.,
programmed with the baiting rule) the other follows a variable-
ratio (VR) schedule (i.e., standard probabilistic reward delivery),
then matching will harvest suboptimal rewards, as shown in
Figure 1C.

Figure 2 demonstrates a telling set of experiments from the
study by Williams (1985), which is reanalyzed here. Rats per-
formed 6 different VI/VR task variants, each summarized with
one line (three on the left plot, three on the right plot). Each
black line here is Vp for each task. In each task variant, rats more
closely approximate the matching solution than the maximizing
solution, and in fact demonstrate a significant degree of under-
matching (choice probabilities are closer to 50% than would be
expected from perfect matching). The finding that animals
match instead of maximize has been replicated numerous times
(Herrnstein and Heyman, 1979; Mazur, 1981; Vyse and Belke,
1992), including in humans (Savastano and Fantino, 1994).

We briefly note that periodic switching policies (i.e., sample
the other option every n choices) are the global optimal policies
in VI/VI tasks (Houston and McNamara, 1981). These are more
difficult for an agent to implement, as it requires tracking choice
history (i.e., tracking ta in Eq. 2), which necessitates a much
larger state representation. In the case of pa = 0.4 and pb = 0.1,
the optimal policy is to alternate selecting option a six times and
option b once (when Pb ; 0.52). If these policies are used, they
should be easy to diagnose, since stay duration distributions will
be bimodal. Across a variety of species, stay duration distribu-
tions remain unimodal (Gallistel et al., 2001; Sugrue et al., 2004;
Bari et al., 2019). This constitutes further evidence against mod-
els based on response counting (as discussed earlier).

Empirically, the finding that animals behave as if they are
unaware of changes in environmental statistics may explain why
most models of matching behavior do not account for the baiting
rule. Examples include melioration (Herrnstein and Vaughan,
1980), local matching (Sugrue et al., 2004), logistic regression
(Lau and Glimcher, 2005; Tsutsui et al., 2016), and models with
covariance-based update rules like those underlying direct actor
and actor critic agents (Loewenstein and Seung, 2006). We are
aware of one study that models the baiting rule (Huh et al., 2009),
though this model failed to explain behavioral data better than Q-
learning in any of 31 mice in the study by Bari et al. (2019).

In summary, because of the complexity of the baiting rules
underlying VI/VI tasks, animals behave as if they are unaware of
the baiting rule because of the following: (1) they do not adopt
the optimal probabilistic policies in VI/VR tasks; (2) they do not
adopt deterministic policies in VI/VI tasks; (3) their behavior is
better fit by models that ignore the baiting rule; and (4) success-
ful models of matching typically ignore the baiting rule. Instead,
animals seem to behave in these tasks as if their actions do not
change the reward probabilities.

Policy compression only allows for perfect matching or
undermatching and excludes overmatching
We now apply the notion of policy compression to matching
behavior. Figure 3 shows the reward–complexity frontier for the 40/
10 task variant in Bari et al. (2019). In this task, mice chose between
two options, each following a variable-interval schedule. One option
gave reward with a base probability of pa = 0.4 and the other
option gave reward with pb = 0.1. These alternated every 40–100
trials and the transitions were uncued to the mice. Using the
arguments we developed above, we assume the brain believes the
world consists of the following two states: s1 : pa ¼ 0:4; pb ¼ 0:1
or s2 : pa ¼ 0:1; pb ¼ 0:4. That is, we ignore the baiting rule in
generating these state representations.

Under this assumption, the reward–complexity frontier is a
monotonically nondecreasing function. Each point on the frontier
corresponds to a reward-maximizing policy under a particular
policy complexity constraint. The frontier achieves a maximum at
policy complexity equal to and exceeding the matching solution
(Fig. 3). Lower-complexity policies correspond to undermatching
(choosing the poorer option more often than prescribed by match-
ing). More complex policies correspond to overmatching (choos-
ing the richer option more often). However, overmatching yields
less reward than matching with a higher cognitive cost. We posit
that the brain optimizes its policy under a complexity constraint,
thereby generating matching behavior.
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reward–complexity curve is a monotonically nondecreasing function. At policy complexities
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policy complexity = 1 bit). However, agents with sufficiently high capacity can compress
their policies and increase their reward rates by adopting a perfect matching policy.
Therefore, policy compression disallows overmatching.
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Mice operate near the optimal reward–
complexity frontier and undermatch
in a manner predicted by policy
compression
Applying the policy compression frame-
work to mouse behavior (Fig. 4A), as
expected, we find that mice are capacity
constrained (Fig. 5A). Moreover, they
operate near the optimal frontier, which
suggests that they are close to optimally
balancing reward and complexity. We
additionally find that policy complexity
does not appreciably change across task
variants (Fig. 5B), suggesting a constant
resource constraint, which we have observed
in prior applications of policy complexity
(Gershman and Lai, 2021).

Policy compression makes a prediction
about the degree of undermatching capa-
city-constrained animals should exhibit in
different task variants. Undermatching
should become exaggerated under re-
ward schedules that demand more com-
plex policies for matching behavior (Fig. 6A,B). In Figure 5A,
the 40/10 reward schedule demands the fewest bits for match-
ing behavior and the 40/5 reward schedule demands more. As
an alternative prediction, one might instead predict greater
overmatching for the 40/5 reward schedule, as the higher-prob-
ability side is easier to discriminate and mice may therefore per-
severate on that side. We find that the policy compression
prediction is borne out, with mice exhibiting significantly
greater undermatching on the 40/5 schedule relative to the 40/
10 schedule (Fig. 6C,D).

We tested several other predictions of policy complexity.
First, given the relationship between cognitive effort and in-
hibitory control (van der Wel and van Steenbergen, 2018), we
predicted sessions with greater policy complexity would be
associated with a decreased false alarm rate. In this dataset, 5%
of all trials were “no-go” trials, and a response was neither
rewarded nor punished. We indeed found evidence that increased
policy complexity was associated with improved inhibitory con-
trol, as there was a significant negative association between the
two using logistic regression (b = �1.4, p, 0.005). Second,
policy complexity predicts that increasing cognitive load (in
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our framework, an increased number of states) should reduce
policy complexity or force a fixed complexity to be distributed
across more states, which should cause actions to become more
stochastic (Lai and Gershman, 2021). We compared behavior
in our 40/10 and 40/5 tasks (two states) to a “multiple probabil-
ity” variant with seven states. As predicted, the conditional en-
tropy (randomness of behavior in each state) increased with an
increased number of states (median conditional entropy [95%
bootstrapped confidence intervals (CIs)] for two states [0.794
(0.783–0.805)] and seven states [0.871 (0.849–0.899)].

Dopaminergic medication increases capacity limits on
memory
Having determined that undermatching and capacity con-
straint are related, we next sought to determine the neural
basis underlying this capacity constraint. We have argued
previously that tonic dopamine controls the precision of
state representations, with greater precision accessible at a
greater cognitive cost (Mikhael et al., 2021). Greater preci-
sion implies increased mutual information between states and
actions, since states are represented with higher fidelity. We
therefore hypothesized that tonic dopamine may modulate pol-
icy complexity, which in matching tasks would alter the degree
of undermatching. Although the literature is scarce, there is

some extant data to argue that pharmacologic
manipulations of dopamine have the expected
effect on undermatching (Soto et al., 2014; Lie
et al., 2016). To address this question, we rean-
alyzed data from human subjects performing a
dynamic foraging task, similar to the mice
(Rutledge et al., 2009). Four groups of subjects
(young controls, elderly controls, patients with
Parkinson’s disease off dopaminergic medica-
tions, and patients with Parkinson’s disease on
dopaminergic medications) performed a VI/VI
task, similar to the mice above (Fig. 4B). In this
task, each option followed a VI schedule, with
reward probabilities alternating among the fol-
lowing four task states: s1 : {0.075, 0.225}, s2 :
{0.043, 0.257}, s3 : {0.225, 0.075}, s4 : {0.257,
0.043}. Subjects performed 800 trials with
uncued transitions between blocks of 70–90
trials.

First, we confirmed that all groups demon-
strated a significant degree of undermatching in
this task (Fig. 7). Young control subjects exhibited
significantly less undermatching than elderly con-
trol subjects (Fig. 8A). Interestingly, patients with
Parkinson’s disease off dopaminergic medications
exhibited significantly greater undermatching than
on sessions when they received dopaminergic med-
ications (Fig. 8A), due partly to an increase in policy
complexity (Fig. 8B). On a subject-by-subject basis,
the patients with Parkinson’s disease who demon-
strated the greatest increase in policy complexity
also exhibited the least degree of undermatch-
ing. If dopaminergic medications increase pol-
icy complexity, we additionally predicted that
they should decrease perseveration (Gershman,
2020). Consistent with the study by Rutledge et
al. (2009), we indeed found evidence in support
of this effect, as Parkinson’s disease subjects became
less perseverative on dopaminergic medications

(logistic regression: b = – 0.23, p, 0.005).
The policy compression framework additionally makes the

prediction that more complex policies should result in slower
response times, since this necessitates more bits that the brain
must inspect to find a coded state (Lai and Gershman, 2021). This
is a counterintuitive prediction for patients with Parkinson’s dis-
ease, since bradykinesia is a defining feature of the condition that
is improved with dopaminergic medications. We find that,
indeed, the policy compression prediction is borne out: dopa-
minergic medications slow down response times for patients
with Parkinson’s disease (Fig. 8C).

Discussion
Decades of observations in the matching literature demon-
strate a consistent bias toward undermatching, but its ori-
gin has been mysterious. Our main contribution is to show
that undermatching can arise from policy compression:
under some assumptions about state representation, maximiz-
ing reward subject to a limit on policy complexity implies
undermatching or perfect matching, never overmatching. Our
theory makes the prediction that capacity-constrained agents
should undermatch more on task variants that require greater
policy complexity for perfect matching behavior, which we
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Figure 6. Mice exhibit greater undermatching in task variants that demand greater policy complexity. A,
Simulation of a policy at a capacity constraint of 0.19 bits. The log-choice ratio is plotted as a function of log-
reward ratio. Dotted line corresponds to unity. B, Theoretical matching slopes as a function of the policy complex-
ity for perfect matching. C, Log-choice ratio as a function of log-reward ratio for the 40/10 (slope = 0.710) and
40/5 (slope = 0.582) task variants. Each colored line is the best fit and dotted line corresponds to unity. D,
Empirical matching slopes (least-squares estimate6 95% CI) for each task variant. 95% CIs: 0.691–0.729 for 40/
10 task variant; 0.563–0.600 for 40/5 task variant. These data are significantly different as the 95% CI bands do
not overlap.
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confirmed using analyses of existing data.
Finally, we showed that dopaminergic medi-
cations reduce undermatching in patients
with Parkinson’s disease, in part by increas-
ing policy complexity.

We did not develop policy compression to
explain undermatching, but rather found that
it naturally explains undermatching in addi-
tion to other phenomena. Policy compression
has broad explanatory power and has been
used to explain softmax policies (Parush et
al., 2011), perseveration (Gershman, 2020),
reward insensitivity (Gershman and Lai,
2021), response times (this article; Lai et al.,
2022), action chunking (Lai et al., 2022), and
state chunking (Lai and Gershman, 2021).

We argue that overmatching should never
be observed for an agent maximizing reward
under a capacity constraint. Overmatching,
however, has been obtained in task variants
that impose a strong cost for switching
actions (Aparicio, 2001). These task variants
do not pose any substantial problems for our
theory. They alter both the state representa-
tion that agents must use, as agents must
store the last action to determine whether
switching is warranted, and the calculation of
expected reward Vp, which should include
the cost of switching. We leave a more sys-
tematic treatment of this hypothesis to
future work.

Our formulation of the optimal reward–
complexity curve assumes that agents ignore
the baiting rule (meaning they do not response
count) and that they represent the state as the
task state (number of pairs of base reward probabilities). These are
the same assumptions used by Sakai and Fukai (2008b), who
developed a theoretical framework that made it clear how these
assumptions lead to matching behavior, even when other similar
policies would be optimal (Figs. 1C, 2). Similar bounded rational-
ity arguments were developed by Loewenstein and Seung (2006),
who approached the problem from the perspective of synaptic
plasticity rules. They proved that any synaptic plasticity rule
driven by the covariance between reward and neural activity
guarantees matching behavior. They further demonstrated that
optimal behavior requires maintaining a memory of covariance
between reward and neural activity over a long (potentially in-
finite) timescale. In their framework, ignoring this long-time-
scale memory results in matching behavior. Sakai and Fukai
(2008b) in fact relate this synaptic plasticity view of matching
to their own theory in the discussion. Our framing of match-
ing behavior for VI tasks can be viewed as the framing of
matching behavior for an infinite capacity agent by Sakai and
Fukai (2008b). We extend their framework by invoking a limit
on this capacity.

Our model is normative in the sense that it describes under-
matching as an optimal solution to a constrained optimization
problem. Our model relies on assumptions about state represen-
tation that are not veridical but nonetheless empirically plausible.
As such, it does not predict the globally optimal solution, consist-
ent with the empirical evidence. Our assumptions about the state
representation yield a monotonic nondecreasing reward–com-
plexity function (Fig. 3). These assumptions are by no means

unique to our theory and in fact underlie a number of theories of
matching and undermatching (Soltani et al., 2006; Sakai and
Fukai, 2008a; Saito et al., 2014). Our contribution is not in using
these assumptions, which we laid out explicitly for clarity, but in
applying the notion of compression to matching behavior. With
a more complete state definition that includes response counting
(Fig. 1A), the reward–complexity curve should be monotoni-
cally increasing, and the policy with the greatest mutual infor-
mation between states and actions would yield the greatest
reward. In fact, baiting can be learned, but requires explicit
training (Tunney and Shanks, 2002), and to our knowledge has
not been observed simply with lengthy practice. While biologi-
cal agents clearly do not possess the full state representation
necessary to optimize reward in matching tasks, overtrained
agents often alternate choices somewhat, which requires a rep-
resentation of past choice (Lau and Glimcher, 2005; Bari et al.,
2019). Although alternation appears to be a minor component
of behavior, it is one that emerges with training, and it is
unclear how agents learn this augmented state representation.

Our model makes the prediction that in a one-state task (e.g.,
base reward probabilities remain fixed within a session), perfect
matching should emerge because policy complexity is 0. Given
the relative dearth of perfect matching in the literature, this
might appear to be a fundamental flaw of our model, since we
claim to offer a general explanation for why undermatching
occurs (including in one-state tasks). However, an important as-
pect of our model is the assumption that animals assume a gen-
erative model of the environment that is mismatched to the true
generative process. A number of previous models (Courville et
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Parkinson’s disease on dopaminergic medications. Slope = 0.300. In all panels, the black solid line corresponds to the
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al., 2006; Yu and Cohen, 2008) have explained sequential
dependencies in behavior as arising from the assumption that
there is sequential structure in the environment. This is a reason-
able assumption in many natural environments, but is an incor-
rect assumption in particular experimental tasks such as the ones
considered in this article. If animals assume sequential depend-
encies, then they are not modeling the task as a single state,
even under conditions where the reward contingencies are sta-
ble. This line of reasoning is consistent with existing data.
First, perfect matching tends to be observed in studies with
significant session-to-session stability in reward probabilities
(Herrnstein, 1961; Baum and Rachlin, 1969), consistent with
the idea that the assumption of instability has to be overridden
by extensive training. Second, a transition from a long period
of stability to a new set of reward probabilities is associated
with increased undermatching (Mazur, 1995; Gallistel et al.,
2001), consistent with the idea that such transitions cue the
animal to construct multiple states. The idea that undermatch-
ing may be a consequence of nonveridical state representa-
tions is not unique to our theory and is the basis of several
other explanations for undermatching (Saito et al., 2014;
Iigaya et al., 2019).

We make no claims about the particular algorithms for
optimizing the reward–complexity trade-off. One mechanistic
model proposed to underlie undermatching introduces noise
in a biophysical model of matching and predicts that increased
noise leads to increased undermatching (Soltani et al., 2006).
Interestingly, introducing noise (e.g., in state representations)
would degrade the mutual information between states and
actions, forcing a capacity constraint. However, noise by itself
does not constitute a mechanistic model of policy complexity,
since it does not guarantee that the resulting policy lies on the
optimal reward–complexity frontier. The development of pol-
icy complexity process models remains an active area of
research (Gershman and Lai, 2021; Lai et al., 2022).

We reported the unexpected and counterintuitive finding
that dopaminergic medications slowed down response times
in patients with Parkinson’s disease. Clinically, dopaminergic

medications are used to improve bradykinesia. How do we rec-
oncile these findings? One view is that our task isolated a cogni-
tive aspect of movement. Response times have long been known
to increase with the number of choices (Hick, 1952). In the
framework of policy compression, this arises because the number
of bits needed to encode a policy increases with the number of
choices in simple response selection tasks, and therefore more
bits need to be decoded to produce a response, which takes more
time (Lai and Gershman, 2021). Because our human task was a
fairly straightforward computer-based assay with simple motor
requirements, we believe we isolated the effect of policy complex-
ity on response time. Bradykinesia, on the other hand, is typically
assessed using a battery of tests that attempt to isolate movement
speed independent of sophisticated decision-making (e.g.,
rapid alternating movements of the hands, leg agility, rising
from a chair, gait). Since subjects were tested;14 h off dopa-
minergic medications, our effects were likely largely driven
by levodopa (half-life, 1.5–2 h) and minimally affected by D2

receptor agonists like pramipexole and ropinirole (half-life
range, 6–12 h), which were likely still at therapeutic concen-
trations (e.g., Lexicomp; https://online.lexi.com/lco/action/
home). We further found that dopaminergic medications reduced
undermatching. This is consistent with a rational inattention
account of tonic dopamine (Mikhael et al., 2021), in which high
tonic dopamine increases the precision of task parameters and,
by extension, state representations. Increased precision of state
representations implies increased mutual information between
states and actions, which is consistent with increased policy
complexity.

In conclusion, we have argued that undermatching arises
from the imperative to compress policies by reducing their infor-
mation-theoretic complexity. This insight was consistent across
different tasks and species. Our model also made nontrivial pre-
dictions about response time and the effects of dopaminergic
medications, which we confirmed empirically. Our findings join
a range of other observations (Lai and Gershman, 2021), suggest-
ing that capacity limits play an important role in determining the
structure of choice behavior.
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