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SUMMARY
Nervous systems maintain information internally using persistent activity changes. The mechanisms by
which this activity arises are incompletely understood. We study prefrontal cortex (PFC) in mice performing
behaviors in which stimuli predicted rewards at different delays with different probabilities. We measure
membrane potential (Vm) from pyramidal neurons across layers. Reward-predictive persistent firing
increases arise due to sustained increases in mean and variance of Vm and are terminated by reward or
via centrally generatedmechanisms based on reward expectation. Other neurons showpersistent decreases
in firing rates, maintained by persistent hyperpolarization that is robust to intracellular perturbation. Persis-
tent activity is layer (L)- and cell-type-specific. Neurons with persistent depolarization are primarily located in
upper L5, whereas those with persistent hyperpolarization are mostly found in lower L5. L2/3 neurons do not
showpersistent activity. Thus, reward-predictive persistent activity in PFC is spatially organized and conveys
information about internal state via synaptic mechanisms.
INTRODUCTION

Predicting future reward is critical for successful adaptive

behavior (Hull, 1943). Nervous systems anticipate the likely out-

comes of stimuli in the environment through reinforcement

learning (Bush and Mosteller, 1951; Rescorla and Wagner,

1972; Sutton and Barto, 1981). In the real world, many reward-

predicting stimuli are followed by a time delay. This requires

the nervous system to maintain activity in anticipation of the

future reward.

Neurons are capable of maintaining changes in firing rates in

the absence of external stimuli. This persistent activity was first

observed in prefrontal cortex (PFC) (Fuster and Alexander,

1971; Kubota and Niki, 1971) and was traditionally viewed as a

substrate of working memory (Fuster and Alexander, 1971, Fu-

nahashi et al., 1989). Subsequent work pointed to amore general

strategy for the nervous system to bridge delays between events

in the world, during decision making (Schall and Hanes, 1993;

Kim and Shadlen, 1999), rule learning (Wallis et al., 2001), and

anticipation of future reward (Watanabe, 1996; Leon and Shad-

len, 1999; Shuler andBear, 2006). In particular, persistent activity

in PFC is critical for cognitive functions that require integrating

learned experience to predict future outcomes for flexible

behavior (Miller and Cohen, 2001; Fuster, 2015).

Despite decades of theoretical work proposing how persistent

activity may be generated, the mechanisms underlying its dy-

namics are still largely unknown. There are multiple challenges

in understanding persistent activity. First, cortical neurons alone

are biophysically incapable of maintaining information over
This is an open access article under the CC BY-N
behaviorally relevant timescales. Their intrinsic membrane time

constants are on the order of tens of milliseconds, and postsyn-

aptic potentials arising from synaptic input only last for hundreds

of milliseconds (Koch, 1999). These are much shorter than the

timescales of delay-related behaviors.

Second, persistent firing patterns in PFC neurons are highly

irregular (Compte et al., 2003; Shafi et al., 2007). Early experi-

mental and theoretical work suggested that persistent spiking

rate changes during task delays are largely due to increased

mean synaptic inputs, driving membrane potential (Vm) above

spike threshold (Wang, 1999; Seung et al., 2000; Brunel and

Wang, 2001). However, firing patterns in this regime are fairly

regular, in contrast to experimentally observed irregular spike

timing in delayed-response tasks (Compte et al., 2003; Shafi

et al., 2007).

One solution to this puzzle lies in the dense synaptic connectiv-

ity between neurons. Cortical neurons receive extensive local and

long-range synaptic inputs, and spikes are driven by integration of

these inputs. Intracellular recordings in awake animals reveal that

cortical neurons exhibit persistent depolarization (Steriade et al.,

2001; Destexhe et al., 2003; Zagha and McCormick, 2014), and

the observed irregular firing patterns are thought to be produced

by fluctuations of their synaptic inputs (Softky and Koch, 1993;

van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome,

1998). These characteristic features of cortical neurons in awake

animals led to proposals that persistent firing rate changes with

irregular timing arise not only by increasing the mean synaptic in-

puts but also through increased variance of synaptic inputs (Amit

and Brunel, 1997; Renart et al., 2003, 2007).
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Although these models are biologically plausible in explaining

the underlying subthreshold dynamics of persistent activity,

there is still a lack of experimental evidence supporting these

models under conditions leading to persistent activity in PFC.

Recently, intracellular recordings in the premotor cortex showed

that increased spiking activity during motor preparation was

correlated with Vm depolarization (Inagaki et al., 2019), but the

direct relationship between Vm variability and the spike output ir-

regularity remains to be tested. Moreover, in sensory and motor

areas of mouse neocortex, large-amplitude Vm fluctuations

observed during quiet resting states disappeared during move-

ment, resulting in decreased Vm variability (Crochet and Pe-

tersen, 2006; Bennett et al., 2013; Polack et al., 2013; Schiemann

et al., 2015), pointing to an apparent discrepancy between

models and experimental data.

Another unexplained phenomenon—observed as soon as

persistent activity was discovered in PFC (Fuster and Alexander,

1971, Funahashi et al., 1989)—is sustained decreases in firing

rates during task delays. Recent intracellular recordings in sen-

sory and motor cortical areas revealed layer- and cell-type-spe-

cific spike output and subthreshold dynamics (Schiemann et al.,

2015; Zhao et al., 2016). These observations suggest a possible

laminar distribution of different subtypes of PFC neurons in mice

(Douglas and Martin, 2004; Dembrow et al., 2010; Morishima

et al., 2011).

Therefore, to study the subthreshold dynamics underlying

reward-predictive persistent activity, we measured Vm in PFC

neurons, while mice performed a delayed-reward task.

RESULTS

Persistent changes in Vm in anticipation of predicted
rewards
To study persistent activity associated with reward anticipation,

we trained thirsty, head-restrained mice on a classical trace-con-

ditioning task (Figures 1A, 1B, and S1). Three olfactory cues, pre-

sented for 0.5 s, predicted one of three outcomes: no reward, a

reward after a 1-s delay, or a reward after a 3-s delay. We

measured Vm by making whole-cell patch clamp recordings (Fig-

ures 1C and 1D) (66 neurons from 39mice) in the dorsomedial re-

gion of frontal cortex, previously characterized by its projections

to mediodorsal thalamus, medial striatum, amygdala, ventral

tegmental area, and dorsal raphe (Uylings and van Eden, 1990;

Van De Werd et al., 2010). Injecting adeno-associated virus

(AAV) into recording sites showed projections to each of these

previously observed efferents (Figure S2). Axons did not target

primary motor cortex, indicating that this area is distinct from

neighboring secondary motor cortex (Hooks et al., 2013).

A subset of neurons (15 of 66, 24%) displayed significantly

increased mean firing rates during delays to reward, relative to

baseline (1 s prior to conditioned stimulus [CS]; pre-CS). This

was the case for both 1-s (Figures 1E, 1F, and S3) (pre-CS: 1.23

±0.45;delay:8.26±1.22spikess�1mean±SEM;Wilcoxonsigned

rank test, p < 0.01) and 3-s delay trials (pre-CS: 0.87± 0.28; delay:

6.03 ± 2.32 spikes s�1; Wilcoxon signed rank test, p < 0.01). After

rewards, firing rates decreased significantly compared to delay

periods (Figure S3) (1-s trials: 2.90 ± 1.26 spikes s�1; Wilcoxon

signed rank test, p < 0.01; 3-s trials: 3.15 ± 1.61 spikes s�1; Wil-
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coxon signed rank test, p < 0.01). We found a similar proportion

of neurons showing increased firing rates during the delay using

extracellular recordings with tetrodes (Figure S4).

Subthreshold Vm, after removing action potentials from these

neurons, showed a significant trial-type and time-window inter-

action (one-way repeated-measures ANOVA, F2,84 = 11.18, p <

0.001). There was significant depolarization in anticipation of

reward, relative to pre-CS periods, during 1-s delays (pre-CS:

�54.36 ± 1.36; delay: �48.04 ± 1.51 mV mean ± SEM; Wilcoxon

signed rank test, p < 0.01), and 3-s delays (pre-CS: �54.28 ±

1.21; delay: �48.63 ± 1.38 mV; Wilcoxon signed rank test, p <

0.01). Vm significantly decreased after reward delivery compared

to delay periods (Figure S3) (1-s trials: �51.37 ± 1.46 mV, Wil-

coxon signed rank test, p < 0.001; 3-s trials: �51.56 ±

1.56 mV, p < 0.01). Depolarization was correlated with increases

in firing rates (1-s: Pearson’s r = 0.541, p < 0.04; 3-s: r = 0.517,

p < 0.05) (Figure S3), indicating that firing rate increases in antic-

ipation of reward were associated with Vm depolarization.

Next, we examined subthreshold Vm dynamics during the

delay period. Vm rapidly depolarized following the onset of

reward-predicting odors. Fitting logistic functions to the rise of

Vm, we observed that the transition from baseline to a state of

persistent depolarization was similar in 1-s (487 ± 45 ms after

odor onset) and 3-s delay trials (684 ± 111 ms after odor onset,

Wilcoxon signed rank test, p > 0.1) (Figure S3). After this transi-

tion, mean Vm remained in a sustained state of depolarization

throughout the delay, showing no difference in Vm between the

first 0.5 and last 0.5 s of the delay (1-s delay: first 0.5 s,

�48.13 ± 1.47mV, last 0.5 s,�47.96 ± 1.62mV,Wilcoxon signed

rank test, p > 0.05; 3-s delay: first 0.5 s, �48.33 ± 1.37 mV, last

0.5 s, �49.48 ± 1.46 mV, p > 0.05). These data indicate that

reward-predicting cues evoked a persistent increase in Vm that

appeared stable during delays to reward.

In tasks such as ours, reward anticipation and preparatory

licking are correlated (Fiorillo et al., 2008; Cohen et al., 2012).

As predicted, lick rates increased significantly in anticipation of

reward compared to pre-CS (1-s: pre-CS, 0.50 ± 0.15, delay,

4.53 ± 0.39 licks s�1; 3-s: pre-CS, 0.51 ± 0.06, delay, 4.17 ±

0.36 licks s�1) (Figure S3) that was further maintained at an

increased level during the consummatory period after the reward

delivery (1-s: 5.91 ± 0.33; 3-s: 4.09 ± 0.36 licks s�1). Previous

studies have shown that a subset of neurons in the premotor cor-

tex located adjacent to our area of study showed direct correla-

tions between licking and neuronal activity in a lick/no-lick task

(Komiyama et al., 2010), whereas another population showed

ramping activity prior to lick onset only during motor preparation

periods (Li et al., 2015; Inagaki et al., 2019). To test the temporal

relationship between lick rates and Vm changes, we estimated

cross-correlation coefficients for each neuron (Figure S3). We

found that Vm and lick rates were positively correlated during

reward-anticipation delays (Figure S3) (Vm-lick cross-correlation

coefficient 1-s: Pearson’s r = 0.68 ± 0.03; 3-s: r = 0.51 ± 0.03).

However, the correlation decreased significantly during reward

consumption (Figure S3) (1-s: Pearson’s r = 0.21 ± 0.10,Wilcoxon

signed rank, p < 0.001; 3-s: r = 0.23 ± 0.07,Wilcoxon signed rank,

p < 0.01). After reward was delivered, licking persisted while mice

harvested reward. At the same time,Vm depolarization terminated

quickly, anddecayed to baseline (Figures 2A–2CandS3) (1-s: 395



Figure 1. Persistent firing rate and Vm changes in PFC during delays to expected reward

(A) Behavioral task in which odors predict no reward, reward following a short delay, or reward following a long delay.

(B) Behavioral learning curves show mean lick rates across days of exposure to the task in one mouse. Bars, odor cues; dashed lines, rewards.

(C) Left: schematic of whole-cell recording. GFP plasmid was included in the recording pipette to localize a subset of neurons. Right: Vm from an example neuron

over several minutes. Ticks below Vm indicate licks.

(D) Top: example trials of each type from the neuron in (C). Note the persistent increase in spiking and sustained depolarization in the delay between cue and

reward. Bottom: Vm with action potentials removed.

(E) Mean firing rates of 15 neurons showing persistent increases during delays to reward.

(F) Firing rates from the same neurons, comparing pre-CS period to delay (individual neurons in gray, points are mean ± SEM).

(G) Mean ± SEM Vm without action potentials from the same neurons.

(H) Vm from the same neurons, comparing pre-CS to delay (individual neurons in gray, points are mean ± SEM).
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± 118ms after reward delivery; 3-s: 436 ± 71ms;Wilcoxon signed

rank test, p > 0.1). These results suggest that Vm depolarization

was temporally correlated with licking during the reward anticipa-

tion, but the termination of depolarization was independent from

ongoing consummatory licking.

Internally generated termination of sustained Vm

changes
Clearly, a reward-predictive stimulus initiates persistent changes

in Vm. What terminates it? Is an external stimulus, such as reward

delivery, required?
Weobserved that some neurons (6 of 66) showed significant hy-

perpolarization during no-reward trials. Remarkably, these hyper-

polarizedstateswere sustained for�3safter cueoffset—precisely

the time of the longest reward delay—and then terminated in the

absence of any external stimulus (Figures 2D–2F) (3.54 ± 0.18 s

from CS offset, not significantly different from termination time on

3-s rewarded trials,Wilcoxon rank-sumtest,p>0.77). Thisdemon-

strates that persistent changes in Vm do not require an external

stimulus to terminate. They can be terminated purely internally.

To study sustained Vm termination further, we designed a

behavioral task with uncertain reward. One stimulus predicted
Cell Reports 35, 109082, May 4, 2021 3
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Figure 2. Persistent Vm changes can be terminated by reward or

purely internally

(A) Action-potential-removed traces (individual trials in gray, averages in thick

lines) of Vm changes relative to baseline from one neuron.

(B) Offset of persistent Vm changes for the same neuron, relative to reward

times.

(C) Cumulative distribution function (CDF) of DVm offset times relative to odor

and reward (n = 15).

(D) Example neuron showing hyperpolarization for ~3 s during no-reward trials

(left), and depolarization during reward trials.

(E) Dynamics of DVm offset for the same example neuron in (D) during no-

reward trials.

(F) CDF of DVm offset times during no-reward trials (n = 6).
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no reward, a second stimulus predicted reward after a 3-s delay,

and a third stimulus predicted reward after a 3-s delay with prob-

ability 0.5 (Figure 3). This task is well-suited to address the ques-
4 Cell Reports 35, 109082, May 4, 2021
tion of whether sustained Vm changes can be terminated by

purely internal mechanisms because following the third stimulus,

reward expectation is fixed for 3 s, until the mouse does or does

not receive reward. In the latter case, if activity terminates

around the time of expected reward, it must be due to a purely

internal process.

Consistent with data from the previous task, there was a sig-

nificant interaction of trial type and time window for firing rate

(one-way repeated-measures ANOVA, F2,42 = 5.95, p < 0.01)

and Vm (F2,42 = 10.54, p < 0.001), and neurons showed signifi-

cantly increased firing rates and sustained depolarizations in

Vm during the delays of trials with reward probability of 1 (Fig-

ure 3) (6 neurons from 5 mice; pre-CS: 1.55 ± 0.40 spikes s�1,

�50.96 ± 1.62 mV; delay: 8.31 ± 1.95 spikes s�1, �47.75 ±

1.35 mV; Wilcoxon signed rank tests, p < 0.05). We did not

observe these differences during no-reward trials (pre-CS: 1.73

± 0.48 spikes s�1, �51.00 ± 1.50 mV; delay: 1.32 ± 0.27 spikes

s�1, �51.51 ± 1.79 mV; Wilcoxon signed rank test, p > 0.05).

Critically, the same neurons also showed sustained increases

of firing rates and Vm during the delays of trials with reward prob-

abilities of 0.5 on both rewarded (pre-CS: 2.06 ± 0.60 spikes s�1,

�50.51 ± 1.87 mV; delay: 9.66 ± 2.59 spikes s�1, �46.85 ±

2.14 mV; Wilcoxon signed rank tests, p < 0.05) and unrewarded

trials (pre-CS: 2.06 ± 0.38 spikes s�1, �50.93 ± 1.62 mV; delay:

9.63 ± 2.78 spikes s�1,�46.15 ± 2.13 mV; Wilcoxon signed rank

tests, p < 0.05). There were no significant differences in either

firing rates (Wilcoxon signed rank tests, p > 0.96) or Vm (Wilcoxon

signed rank tests, p > 0.32) during the delays of these trials,

compared to those with reward probabilities of 1, indicating

similar dynamics while anticipating a possible reward at a fixed

time.

As predicted, based on the previous experiment (Figure 2),

sustained increases in firing rates and depolarization signifi-

cantly decreased after reward delivery, compared to the delay

period. This occurred during trials with reward probabilities of

1 or 0.5, when reward was delivered (Figure S5) (post-uncondi-

tioned stimulus [US], P(R) = 1: 2.59 ± 0.57 spikes s�1, Wilcoxon

signed rank test, p < 0.05,�50.31 ± 1.60mV, p < 0.05;P(R) = 0.5:

3.87 ± 1.27 spikes s�1, p < 0.05, �49.06 ± 1.97 mV, p < 0.05).

Remarkably, evenwhen rewardwas omitted duringP(R) = 0.5 tri-

als, Vm and firing activity also abruptly terminated around the

time of expected reward and showed significantly decreased

firing rates and Vm compared to the delay period (Figures 3F

and S5) (2.98 ± 0.99 spikes s�1, p < 0.05, �49.46 ± 1.88 mV,

p < 0.05). We measured the times at which Vm changes termi-

nated and found that transitions from depolarized states to

baseline Vmwere similar during trials with or without reward (Fig-

ure 3G) (P(R) = 1: 0.48 ± 0.63 s after reward; P(R) = 0.5: rewarded

trials, 0.53 ± 0.32 s after reward, unrewarded trials, 0.19 ± 0.20 s

after expected reward time; Wilcoxon signed rank tests, p > 0.1).

Termination of Vm changes after expected reward on reward-

omission trials was not solely a result of licking terminating at

that time; mice continued licking even after the expected time

of reward (Figure S5). In addition, Vm and licking rates showed

weak temporal correlations during reward-anticipation delays

(P(R) = 1, Pearson’s r = 0.13 ± 0.12; P(R) = 0.5 rewarded trials,

r = 0.14 ± 0.11; P(R) = 0.5 unrewarded trials, r = 0.32 ± 0.10)

and reward consumption (P(R) = 1, r = 0.02 ± 0.20; P(R) = 0.5,
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Figure 3. Persistent Vm changes in anticipation of probabilistic reward

(A) Behavioral task in which odors predict no reward, reward with probability 0.5 after a 3-s delay, or reward with probability 1 after a 3-s delay.

(B) Mean licking rates from one experiment on each trial type.

(C) Vm from one neuron during three example trials of each type. Ticks below Vm traces indicate lick times.

(D) Firing rates from 6 depolarizing neurons in this task, comparing pre-CS period to delay (individual neurons in gray, points are mean ± SEM).

(E) Vm without action potentials from the same neurons.

(F) Dynamics of sustained Vm termination across trial types from one neuron. Note the return of Vm to baseline even without reward.

(G) CDF of DVm termination times relative to expected reward times for rewarded and unrewarded trials (n = 6).
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r =�0.01 ± 0.19) or during reward omission (P(R) = 0.5, r =�0.01

± 0.19).

Thus, based on results from both experiments, we conclude

that persistent changes in Vm could be terminated in the absence

of reward by a mechanism purely internal to the nervous system.

Persistent activity increases are primarily fluctuation-
driven
We have observed that increased average Vm was associated

with increased firing rates during reward-anticipation delay pe-

riods. Increased average Vm could arise by either one or a com-

bination of two factors: tonic depolarization or a change in dy-

namics of Vm fluctuation resulting from changes in the patterns

of presynaptic network activity (Hô and Destexhe, 2000; Chance

et al., 2002; Shu et al., 2003). In order for a spike to occur, Vm

must reach spike threshold. It has been proposed that persistent
spiking arises from sustained Vm depolarization over threshold

(mean driven) or by increasing the magnitude of fluctuation to

enhance the probability that Vm exceeds spike threshold (fluctu-

ation driven) (Amit and Brunel, 1997; Renart et al., 2003, 2007).

To distinguish between these mechanisms during periods of

persistent spiking, we combined neurons from the two behav-

ioral tasks, and analyzed 3-s delay trials of P(R) = 1 with at least

an average of 2 spikes s�1 during reward delays.

The example neurons in Figure 4A show Vm depolarization

with large fluctuations, greater than 10 mV in magnitude, only

during reward delays, suggesting that increased Vm mean

(E(Vm)) and variance (Var(Vm)) underlie persistent activity during

this interval. To quantify this, we plotted histograms of Vm in

each time window (pre-CS, delay, and post-US) (Figure 4B)

and measured the mean and variance of each Vm distribution

(Figures 4C and S6). E[Vm] was significantly higher during delay
Cell Reports 35, 109082, May 4, 2021 5
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Figure 4. Vm changes are primarily fluctuation-driven during delays to reward

(A) Vm during two 3-s delay trials illustrating subthreshold fluctuations.

(B) Probability densities of spike-removed Vm during the pre-CS period and the 3-s delay for the same neuron.

(C) E[Vm] and Var[Vm] during pre-CS and 3-s delay periods (n = 17; individual neurons in gray, points are mean ± SEM).

(D) Left: CV of ISI during pre-CS and 3-s delay. Right: CV of ISI correlated with Var[Vm] during delays.

(E) Left: example transfer function of firing probability versus Vm during pre-CS period (gray) and 3-s delay (black). Vthresh indicates spike threshold. Inset: spike

waveforms from the example neuron. Scale bars, 5 mV, 5 ms. Right: average transfer functions of 17 neurons (±SEM).

(F) CDF of the deviation of Vm from Vthresh during the delay for individual neurons (gray, n = 17) and average (blue).

(G) Example Vm from a 3-s delay trial showing the relationship between spikes and threshold and local interspike interval variability (CV2).

(H) Probability of Vm > Vthresh during 3-s delay trials across 17 neurons (mean ± SEM).

(I) Probability densities of CV2 when Vm > Vthresh (red) or Vm < Vthresh (gray).
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periods (�47.53 ± 0.89 mV) relative to pre-CS (�52.49 ±

0.98 mV, Wilcoxon signed rank test, p < 0.001) (Figure 4C) or

post-US (Figure S6) (�49.97 ± 1.16 mV, p < 0.01), reflecting

the depolarized states during the delay. In addition, Var[Vm]

was significantly larger during the delay than pre-CS or post-

US (pre-CS: 17.17 ± 2.84 mV2; delay: 23.73 ± 3.49 mV2; post-

US: 15.62 ± 1.67 mV2; Wilcoxon signed rank test, p < 0.01)

(Figures 4C and S6), which indicates that increased average

Vm during the delay was due to a combination of Vm depolariza-

tion and increased Vm fluctuation. Var[Vm] was not significantly

different between pre-CS and post-US periods (Wilcoxon signed

rank test, p > 0.4), demonstrating that increased Var[Vm] was se-

lective for the delay period. Despite weak correlations between

mean Vm and lick rates (Figures S3 and S5), it is possible that

trial-by-trial licking accounted for Vm changes. We compared

trial-by-trial lick rates and Vm mean and variance during reward

delays and post-US. We found no clear relationship between

Vm and lick rates in either time interval Figures S6 and S7). We

further compared trial-by-trial licking and Vm in the probabilistic

reward task (Figure S6) and found a similar lack of relationship,

indicating that Vm changes were dissociated from licking.
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Changes in Vm variance affect spike timing irregularity (Softky

and Koch, 1993; van Vreeswijk and Sompolinsky, 1996; Shadlen

and Newsome, 1998). Theoretical studies of spiking neurons

predicted that irregular spike timing during persistent activity

arises from a network operating in a fluctuation-driven regime,

whereas regular spiking is due to mean-driven activity (Renart

et al., 2003, 2007; Roxin et al., 2011; Petersen and Berg, 2016).

To determine how Vm variation related to spike irregularity, we

measured spike timing variability by calculating the coefficient of

variation (CV, SD/mean) of inter-spike interval distributions.

Spike timing increased in irregularity during the delay, more so

than during the pre-CS period (pre-CS: 0.7 ± 0.07; delay: 1.57

± 0.14; Wilcoxon signed rank test, p < 0.001), consistent with

previous results in primate PFC (Compte et al., 2003). Increased

spike irregularity was correlated with increases in Var[Vm] (Fig-

ure 4D; r = 0.58, p < 0.02), suggesting that persistent activity dur-

ing reward delays operated in a fluctuation-driven regime.

In fluctuation-driven networks, themean inputs are subthresh-

old, whereas they are suprathreshold in mean-driven networks

(Gerstner et al., 2014). When mean inputs are subthreshold,

spikes are driven by fluctuations in Vm, resulting in increased
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probability of spikes within normally silent ranges of Vm (Hô and

Destexhe, 2000; Miller and Troyer, 2002; Fellous et al., 2003;

Roxin et al., 2011). For each neuron, wemeasured the probability

of an action potential (P(AP)) in 1-mV intervals of Vm. When Vm

was well below threshold, P(AP) increased monotonically with

Vm during the delay, whereas there was no spike at the same

voltage during pre-CS periods (Figure 4E). When Vm was sub-

threshold, the relationship between Vm and P(AP) during the

delay was approximated by a power law (Figure 4E), confirming

the contribution of Vm fluctuations in generating spikes during

delay periods (Hô and Destexhe, 2000; Miller and Troyer, 2002).

Across neurons, we fit a function of the form a(Vm)
b separately

for the 3-s delay (R2 = 0.98) and for the pre-CS period (R2 =

0.97), considering the monotonically increasing values of firing

probability (Figure 4E). Values of b were smaller for the pre-CS

period (b = 2.85 ± 0.29) than the 3-s delay (b = 3.55 ± 0.27), sug-

gesting increasedneuronal responsivenessduringdelayperiods.

When neurons fired while Vm was above threshold, however,

there was no clear relationship between Vm and P(AP), suggest-

ing that neurons were no longer in a fluctuation-driven regime.

Cumulative distributions of Vm showed that, during the delay,

Vm between action potentials was mostly subthreshold (84% ±

0.04% of the total time) (Figure 4E), but spent more time above

threshold than during the pre-CS period (98.0% ± 0.01% of

the total subthreshold time, Wilcoxon signed rank test, p <

0.001) or the post-US period (92.0% ± 0.03%, p < 0.002) (Fig-

ure S7). This suggests that, although delay-period activity was

primarily fluctuation-driven, some periods of spiking may be

more regular due to epochs of mean-driven activity over

threshold. To test this prediction, we calculated instantaneous

spike irregularity (CV2), to measure the regularity of spiking

over time (Holt et al., 1996). We found that, indeed, when mean

Vm in the 25 ms preceding spikes were suprathreshold, spike ir-

regularity was lower than when spikes were generated following

subthreshold Vm (CV2 suprathreshold: 0.57 ± 0.09; subthreshold:

0.75 ± 0.07; Wilcoxon rank-sum test, p < 0.02) (Figures 4G–4I).

Interestingly, Vm remained above threshold more often at the

beginning of the delay than during later delay periods, suggest-

ing that strong synaptic inputs initiated persistent activity, to be

maintained further by fluctuations of synaptic inputs (Figure 4H).

Reward-predictive persistent hyperpolarization
Previous studies using extracellular recordings in PFC found

neurons with suppression of firing rates relative to baseline dur-

ing task delays (Fuster and Alexander, 1971; Funahashi et al.,

1989). We also observed a subpopulation of neurons in our first

task (Figure 1A) that showed persistent decreases in firing rates

during reward-anticipation delays (Figure 5) (no reward: pre-CS,

5.13 ± 0.98 spikes s�1, delay, 6.37 ± 1.21; 1-s trials: pre-CS, 5.07

± 0.96, delay, 1.93 ± 0.54, post-US, 2.93 ± 0.76; 3-s trials: pre-

CS, 5.03 ± 1.01, delay, 1.68 ± 0.40, post-US, 2.98 ± 0.67). There

was a strong interaction between trial type and time window for

firing rates (one-way repeated-measures ANOVA, F2,54 = 14.45,

p < 0.001), showing significant differences between pre-CS and

delay intervals in both 1-s (Wilcoxon signed rank test, p < 0.01)

and 3-s reward trials (p < 0.01), as well as between delay and

post-US in 3-s reward trials (p < 0.05) (Figure S8). These de-

creases in firing rates were accompanied by hyperpolarized Vm
relative to the pre-CS period (no reward: pre-CS, �48.06 ±

0.51 mV, delay, �47.35 ± 0.68; 1-s trials: pre-CS, �47.86 ±

0.55, delay, �49.62 ± 0.71, post-US, �48.86 ± 0.64; 3-s trials:

pre-CS, �48.06 ± 0.55, delay, �49.91 ± 0.78, post-US, �48.81

± 0.6) (Figures 5D and S8). There was also a significant interac-

tion between trial type and time window (one-way repeated-

measures ANOVA, F2,54 = 14.32, p < 0.001), with significant dif-

ferences in Vm between pre-CS and delay (Wilcoxon signed rank

test, 1-s, p < 0.01, 3-s, p < 0.01) and delay and post-US during 3-

s trials (p < 0.05) (Figure S8).

Similar to depolarizing neurons, Vm hyperpolarization was

maintained throughout the delay and terminated after reward

(Figures 5F and 5G) (1-s delay: 880 ± 221 ms after reward; 3-s

delay: 894 ± 164 ms). In contrast to delay-period depolarizing

neurons, hyperpolarizing neurons showed significant decreases

in Var[DVm] during reward delays compared to pre-CS (no

reward: pre-CS, 6.48 ± 0.87 mV, delay, 7.56 ± 0.86, Wilcoxon

signed rank test, p = 0.84; 1-s: pre-CS, 6.71 ± 0.85, delay,

5.14 ± 0.78, p = 0.004; 3-s: pre-CS, 6.70 ± 0.83, delay, 5.00 ±

0.52, p = 0.02) and post-US (1-s trials post-US, 7.85 ± 1.76,

p = 0.01, 3-s trials post-US, 6.90 ± 0.60, p = 0.002). In addition,

neuronal input-output transformations, comparing 3-s delay to

pre-CS periods, reflected the decrease in Var[DVm] (Figure 5H).

There was a marked decrease in P(AP) in each Vm interval during

delay periods (b = 4.17 ± 1.25, 95% confidence interval [CI], R2 =

0.94) compared to pre-CS (b = 7.59 ± 0.88, 95% CI, R2 = 0.99).

As we observed in depolarizing neurons, lick rates did not

clearly correlate with Vm in hyperpolarizing neurons. We

compared trial-by-trial lick rates with Vmmean and variance dur-

ing delay and post-US periods in 3-s delay trials and found no

clear relationship (Figure S8), suggesting that reward anticipa-

tion may be represented by neurons with persistent decreases

in activity as well as by those with increases.

Recent work showed that neurons with persistent activity dur-

ing the task delaywere robust to perturbation (Kopec et al., 2015;

Li et al., 2016; Inagaki et al., 2019), demonstrating that persistent

activity was maintained by attractor-like network dynamics

(Hopfield, 1982; Aksay et al., 2001; Brody et al., 2003). Many of

these experiments focused on neurons with increased activity;

less is known about the robustness of persistent activity changes

in neurons with decreased activity during the delay (Li et al.,

2016). To test this, we expressed the light-gated ion channel,

channelrhodopsin-2 (ChR2) in dorsomedial frontal cortex and

made whole-cell recordings in neurons expressing ChR2 (see

STAR Methods) that showed hyperpolarization during the delay

(5 neurons, DVm relative to pre-CS: no reward trials, 0.53 ±

0.46 mV, 1-s delay trials, �3.28 ± 1.68 mV, 3-s delay trials,

�4.14 ± 2.14 mV). We directly excited these neurons and sur-

rounding areas for 500 ms during the delays to reward. If the hy-

perpolarized state is not maintained by network activity, a brief

excitation could induce a prolonged depolarized state driven

by intrinsic mechanisms such as plateau potentials (Major and

Tank, 2004; Milojkovic et al., 2005; Major et al., 2008). However,

we found that Vm rapidly returned to its hyperpolarized state after

the stimulation without showing any prolonged depolarization

(Figures 5I–5K). These results suggest that reward anticipation

could be represented by neurons with persistent decreases in

activity that is actively maintained by network dynamics.
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Figure 5. Hyperpolarizing persistent Vm changes

(A) Vm from an example neuron showing hyperpolarization during delays to reward.

(B) Vm from the same neuron with action potentials removed (individual trials in gray).

(C) Mean firing rates and DVm from each trial type across 10 hyperpolarizing neurons.

(D) Vm during delay versus pre-CS periods.

(E) Var[Vm] during delay versus pre-CS periods.

(F) Dynamics of termination of hyperpolarization after reward from an example neuron.

(G) CDFs of hyperpolarization offset times for 1-s and 3-s delay trials.

(H) Average transfer functions (±SEM). Black, 3-s delay; gray, pre-CS.

(I) Experimental schema and example trials from one neuron, showing hyperpolarization between CS and delayed reward and a similar response despite a burst

of stimulation-induced spikes during the delay (cyan period).

(J) Mean DVm from an example neuron during unstimulated versus stimulated (cyan) trials, for trials with no reward, 1-s delay, and 3-s delay.

(K) Mean ± SEM (in cyan; individual neurons in gray, n = 5) difference between stimulated (‘‘stim’’) and unstimulated (‘‘no stim’’) trials. ‘‘Pre’’ indicates the interval

500 ms before stimulation onset. ‘‘Stim’’ is during stimulation (or the corresponding period during unstimulated trials). ‘‘Post’’ is 500 ms after stimulation offset.
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Persistent activity is layer-specific
Is there a circuit logic for this persistent activity? Neocortical py-

ramidal neurons are organized into layers, comprising subpopu-

lations of neurons that send outputs to distinct targets (Thomson

and Bannister, 2003; Douglas and Martin, 2004). Locally, L2/3

neurons provide prominent excitatory input to L5 neurons,

whereas L5 neurons form reciprocal connections with each other

(Douglas andMartin, 2004; Otsuka and Kawaguchi, 2008; Brown

and Hestrin, 2009; Morishima et al., 2011). L5 pyramidal neurons

are further subdivided into two major groups based on their pro-

jection targets. Pyramidal tract (PT) neurons send axons pre-

dominantly to midbrain and brainstem structures and have

somata mainly in lower L5. Intratelencephalic neurons (IT) send
8 Cell Reports 35, 109082, May 4, 2021
axons to striatum and contralateral cortex and have somata

mostly, but not exclusively, in upper L5. These two subpopula-

tions of L5 neurons have different somatodendriticmorphologies

and biophysical properties (Hattox and Nelson, 2007; Dembrow

et al., 2010; Avesar and Gulledge, 2012; Oswald et al., 2013; Ka-

waguchi, 2017; Anastasiades et al., 2018).

To test whether the distinct subsets of neurons found in

different layers contributed distinct patterns of persistent

activity, we first compared firing patterns and their recording

depth. Somatic depth estimated from the brain surface

during recordings revealed that neurons that showed persis-

tent DVm during delays to reward were mostly located in L5

(Figures 6A and 6B). Of those, depolarizing neurons were
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mostly in upper L5, whereas hyperpolarizing neurons were

almost exclusively found in lower L5. In addition, a subset of

neurons visualized with GFP expression after recordings sup-

ported the correlation between depth of soma and Vm modu-

lation (Figure S9).

In contrast, most PFC neurons recorded in superficial layers

(14 neurons, <300 mm from the pial surface) did not fire action po-

tentials, and only a few neurons fired action potentials briefly

following odor cues (3 of 14) (Figures 6C and 6D). All three

response types clustered at different somatic depths (Kruskal-

Wallis c22 = 16.3, p < 0.001).

To verify this result with a larger sample size, we recorded

extracellularly from 167 neurons in 2 mice using 64-channel sili-

con probes (Figure 6E). These electrodes had a linear arrange-

ment of contacts, which allowed us to record simultaneously

from neurons with known relative depths. Qualitatively, data

from individual sessions confirmed the laminar organization

observed with whole-cell recordings. Neurons at depths of less

than 300 mm from the pial surface typically showed brief (100–

200 ms) excitation after reward-predicting cues. Neurons at

deeper locations had sustained firing rate changes,with predom-

inantly excitation in more superficial L5, and predominantly inhi-

bition in deeper L5. To quantify this, we calculated the average

firing rate of each neuron during 3-s delay trials, and clustered

them into three groups, using principal component analysis.

These three groups had firing dynamics matching the shapes of

the three firing patterns observed in the whole-cell recordings:

phasic excitation, sustained excitation, and sustained inhibition

(Figure 6E) (Shuler and Bear, 2006; Huertas et al., 2015). We

compared the depths of each population of neurons (Figures

6F and 6G) and found that those showing phasic excitation (me-

dian depth, 320 mm) were more superficial than those showing

sustained excitation (median depth, 620 mm, Wilcoxon rank-

sum test, p < 0.05). Neurons showing sustained excitation were

found to bemore superficial than those showing sustained inhibi-

tion (median depth, 770 mm, Wilcoxon rank-sum test, p < 0.05).

To further demonstrate the physiologically distinct subpopula-

tions of L5 neurons,wemeasured intrinsic properties of pyramidal

neurons in different depths of L5 in anesthetizedmice (12 neurons

from6mice). Therewas no difference in firing patterns during cur-

rent injection (frequency-adaptation ratio at +200 pA: upper L5,

0.80 ± 0.23; lower L5, 0.87 ± 0.24, p > 0.05) and input resistance

(upper L5, 153 ± 7.52 MU; lower L5, 155 ± 5.75 MU, p > 0.05).

However, there was a positive correlation between recording

depth and ‘‘voltage sag’’ ratio (r = 0.61, p < 0.05): neurons in lower

L5 had a greater voltage sag in response to hyperpolarizing cur-

rent steps than those in upper L5 (Figures 7A and 7B) (upper

L5, 1.04 ± 0.01; lower L5, 1.09 ± 0.01, p < 0.01).

The voltage sag is thought to be generated by hyperpolar-

ization-activated cyclic nucleotide-gated channels that generate

the h-current, which helps generate resting Vm (Biel et al., 2009).

Given this biophysical difference between upper and lower L5

neurons, we predicted that resting Vm would be higher in lower

L5 neurons. To test this, we examined Vm in a pre-task window,

before the start of the first trial. Pre-task Vm was significantly

higher in neurons that were hyperpolarized during delays to

reward (Figures 7C–7E) (�61.4 ± 2.2 mV) than in neurons that

were depolarized during those delays (�50.7 ± 0.88 mV; Wil-
coxon rank-sum test, p < 0.01). In addition, firing rates before

the task began were higher in neurons hyperpolarized (Figure 7F)

(5.16 ± 1.13 spikes s�1) than depolarized (0.70 ± 0.44 spikes s�1;

Wilcoxon rank-sum test, p < 0.01) during delays to reward. These

results suggest that two different functionally defined popula-

tions in L5 sublayers have distinct intrinsic properties that set

their baseline activity before the task and can determine how

they behave during reward-delay periods.

DISCUSSION

In our experiments, mice learned associations between cues and

their outcomes. Our data showed that these learned relation-

ships elicited activity that was stable and depended on predicted

future events.

Theoretical and experimental studies have proposed that at-

tractor dynamics could produce stable, persistent firing rate

changes (Hopfield, 1982; Seung, 1996; Amit and Brunel, 1997;

Renart et al., 2007; Lim andGoldman, 2013). In particular, a Hop-

field networkmodel (Hopfield, 1982) suggested that neurons can

learn synaptic input patterns and store them as a set of synaptic

weights that can be retrieved by learned inputs. Odor cues that

predicted reward with probability 0.5 initiated persistent activity

changes that terminated precisely at the time of the expected

reward, even when reward was omitted. In a subset of our neu-

rons, odor cues that predicted no reward also generated persis-

tent activity that lasted for �3 s, which was precisely the longest

expected interval between cue and reward. This learned timing

may have been stored as a reference interval (Gibbon et al.,

1984), which could then be used to predict the expected time

of reward or the delay on no-reward trials (Watanabe et al.,

2002). Our findings indicate that persistent activity can represent

an internal state of expectation about future events, which can

be terminated without an external signal.

We found that neurons with persistent increases in firing rates

exhibited both Vm depolarization and increased Vm variance. In

addition, these neurons showed highly irregular firing patterns,

suggesting that, during the delay period, they were in a fluctua-

tion-driven regime. Although theoretical studies predicted

increased Vm variance without changing mean Vm to underlie

fluctuation-driven persistent activity maintenance, it has been

shown that both depolarization and increased variance enhance

neuronal gain and responsiveness (Hô and Destexhe, 2000;

Chance et al., 2002; Fellous et al., 2003). In our data, input-

output curves were approximated by a power law, characterized

by a non-zero spike rate for mean Vm below spike threshold (Hô

and Destexhe, 2000; Miller and Troyer, 2002; Roxin et al., 2011),

which shifted to the left during delay periods. These results indi-

cate that Vm depolarization during reward anticipation provided

increased neuronal responsiveness, with increased Vm variance

further enhancing spiking probability. These appear to be the in-

gredients to maintain persistent, irregular spike output for multi-

ple seconds in our tasks.

What could be the source of Vm fluctuations? Previous studies

proposed that temporally balanced excitatory and inhibitory syn-

aptic inputs maintain neural activity in stable states, producing

irregular spiking outputs (Amit and Brunel, 1997; Shadlen and

Newsome, 1998; Renart et al., 2003, 2007). In these models, if
Cell Reports 35, 109082, May 4, 2021 9
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Figure 6. Persistent activity is layer-specific

(A) Maximum-intensity projection of GFP expression in two neurons recorded from onemouse. One had a soma in upper L5 and showed persistent depolarization

during the delay to reward. The other had a soma in lower L5 and showed persistent hyperpolarization during the delay to reward. Scale bar, 100 mm.

(B) Recording depth of the three populations of neurons.

(C) Example Vm from a L2/3 neuron on each trial type. Below are spike-removed traces.

(D) Mean firing rates and DVm from 14 L2/3 neurons. Gray, no-reward trials; thin black, 1-s delay trials; thick black, 3-s delay trials.

(E) Schema of extracellular recordings with silicon probe contacts spanning cortical layers (top) and average firing rates on 3-s delay trials for each neuronal

response type (bottom).

(F) Histograms (top) and estimates of probability densities (bottom) for neurons. Scale bar, 0.001 density.

(G) Right: average firing rates of 39 simultaneously recorded neurons plotted by depth from pial surface during 3-s delay trials.
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Vm drifts above threshold, it produces regular spiking output.

However, if excitation is balanced by inhibition, net input cur-

rents fluctuate and spike trains are irregular. Interestingly, we

observed that although Vm was mostly subthreshold during the

delay period, Vm tended to lie above threshold, accompanied

by more regular spike patterns, in the beginning of the delay. In

addition, there was no threshold-linear relationship when spikes

were initiated above threshold, suggesting that total input was

saturated during these periods. Strong, transient excitation,

generated by the reward-predicting stimuli, could account for

this early suprathreshold activity. This pulse of excitation could

act as a command signal for the network to recruit local recurrent

excitation, balanced by inhibition, to maintain persistent activity

(Seung et al., 2000; Brunel and Wang, 2001). The transition from

mean- to fluctuation-driven activity may be similar to previous

reports of changes in firing dynamics over the course of delay

periods (Suzuki and Gottlieb, 2013; Spaak et al., 2017).

We found clear Vmmodulation in the absence of licking (partic-

ularly on CS� trials), indicative of internally generated Vm fluctu-
10 Cell Reports 35, 109082, May 4, 2021
ations. However, it has also been shown that activity across cor-

tex covaries with movements (Musall et al., 2019; Stringer et al.,

2019), forming a dynamic interaction between recurrent activity

within cortex and inputs arising from movements. Although we

found differences in the dynamics of Vm and licking, Vm fluctua-

tionsmay bemodulated by a combination of internally generated

signals and the panoply of movements that cannot be summa-

rized by a single variable.

Although most literature on persistent activity focused on neu-

ronswith increased firing rates (see Li et al., 2016), we also exam-

ined the subthreshold patterns of persistent activity in neurons

that had decreased firing rates during reward-anticipation de-

lays. These neurons showed persistent hyperpolarization and

decreasedVm variance thatwas robust tobrief local perturbation,

indicating that decreased firing rates could be maintained by

network activity. How, then, could the same network shared by

depolarizing neurons maintain persistent hyperpolarization?

One possibility is that strong excitatory input to the network

also recruited local inhibition, resulting in hyperpolarization in a
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Figure 7. Layer-specific biophysical prop-

erties

(A) Biophysical properties of upper and lower L5

pyramidal neurons in anesthetized mice. Example

upper (left) and lower (right) L5 neurons in

response to current injections. Note the pro-

nounced sag in the hyperpolarizing response to

negative current injection in the lower L5 neuron.

Scale bars, 10 mV, 200 ms.

(B) Sag ratios are larger in lower versus upper L5

neurons (black points, mean ± SEM).

(C) Example depolarized neuron exhibiting a sharp

increase in Vm at the beginning of the task. Arrow

indicates �50 mV.

(D) Example hyperpolarized neuron exhibiting a

sharp decrease in Vm at the beginning of the task.

(E and F) Neurons depolarized during delays to

reward had lower pre-task Vm and firing rates than

those hyperpolarized during delays to reward

(black points, mean ± SEM).
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subpopulation of neurons. It has been reported that L5 cortical

neurons form different local inhibitory connections, eliciting

distinct patterns of responses in different subtypes of neurons

(Lee et al., 2014; Morishima et al., 2017). Thus, the hyperpolar-

ization we observed during reward delays in a subpopulation of

neurons may have resulted from increased synaptic inhibition

onto these neurons. On the other hand, it has been shown that

increasing total synaptic conductance—without disrupting the

balance between excitation and inhibition—leads to decreases

in neural responsiveness via shunting inhibition (Hô and Des-

texhe, 2000; Chance et al., 2002). Indeed, we observed that

input-output functions of hyperpolarizing neurons were shifted

to the right, suggesting decreased neural responsiveness during

delays. Thus, network-generated synaptic activity in these neu-

rons could increase total synaptic conductance, including inhib-

itory synapses, further enhancing persistent hyperpolarization

through shunting inhibition.

In the cortical area we studied, generation andmaintenance of

persistent activity was organized anatomically. It has been re-
ported that neurons in different layers

use different coding schemes: L2/3 neu-

rons are sparsely active, whereas L5 neu-

rons fire persistently on stimulation (de

Kock et al., 2007; Niell and Stryker,

2008; Sakata and Harris, 2009; Schie-

mann et al., 2015). Similarly, we observed

that neurons recorded in superficial

layers were mostly silent, and only a few

neurons showed brief excitation following

reward-predicting stimuli. In contrast,

although a large population of neurons

was either silent or did not show task-

relevant modulation during the delay,

�40% of neurons recorded in deeper

layers showed persistent activity

throughout the delay. The different con-

nectivity of neurons in different layers
may contribute to their coding schemes. Within a cortical col-

umn, L2/3 neurons often form interlaminar, feedforward synap-

ses with L5 neurons, and L5 neurons form strong intralaminar

recurrent connections (Douglas and Martin, 2004; Otsuka and

Kawaguchi, 2008; Brown and Hestrin, 2009; Morishima et al.,

2011). Brief excitation in L2/3 neurons could, therefore, act as

a trigger to initiate persistent activity through recurrent synaptic

networks in L5.

Within L5, we observed two distinct patterns of persistent ac-

tivity. Upper L5 neurons showed increased firing rateswith depo-

larized Vm, whereas lower L5 neurons showed decreased firing

rates with hyperpolarized Vm. Rather than reflecting two tails of

a distribution of firing rates,wepropose that differences in synap-

tic and intrinsic biophysical properties could explain these two

opposing dynamics. Within L5, neurons are subdivided based

on their projection targets and cluster into different sublayers

(Morishima and Kawaguchi, 2006; Wang et al., 2006; Dembrow

et al., 2010;Morishima et al., 2011; Lee et al., 2014). Furthermore,

differences in intrinsic properties further differentiate their
Cell Reports 35, 109082, May 4, 2021 11
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responses to synaptic inputs (Dembrow et al., 2010; Anasta-

siades et al., 2018). In agreement with these previous studies,

we found that the intrinsic properties of neurons varied by

response dynamics and cortical layer. The implication of

opposing activity patterns in two sublayers of L5 is that their

downstream targets receive distinct signals and form feedback

loops that could maintain persistent activity. These efferents

include thalamus (Schiemann et al., 2015; Bolkan et al., 2017;

Guo et al., 2017), contralateral cortex (Li et al., 2016), and neuro-

modulators such as norepinephrine (Wang et al., 2007; Dembrow

et al., 2010; Schiemann et al., 2015; Breton-Provencher and Sur,

2019), acetylcholine (Egorov et al., 2002; Dembrow et al., 2010;

Rahman and Berger, 2011; Baker et al., 2018), dopamine (Wil-

liams and Goldman-Rakic, 1995), and serotonin (Williams et al.,

2002; Avesar and Gulledge, 2012; Stephens et al., 2014; Geddes

et al., 2016; Zhou et al., 2017). Notably, the present laminar orga-

nization differs from that found in humans (Finn et al., 2019) and

monkeys (Goldman-Rakic, 1995; Wang et al., 2013; Yang et al.,

2013), likely reflecting differences across species (DeFelipe,

2011) and tasks.

Persistent activity is a general strategy for nervous systems to

represent behaviorally relevant states over biophysically long

timescales. As predicted from theoretical studies, the persistent

activities elicited from learned association between reward-pre-

dicting cues and rewards primarily operated within a fluctuation-

driven regime. These findings contrast with previous studies in

sensory-motor cortex showing increased firing rates that were

associated with decreased Vm variability. Although the reason

for this discrepancy is unclear, one possibility is that because

sensory-motor cortex is important for integrating sensory inputs

and controlling motor output, they increase signal-to-noise ratio

by reducing Vm variance, thereby enhancing signal detection. By

contrast, because PFC has an important role in executive con-

trol, the increased Vm variance we observed may reflect the dy-

namics of multiple components of cognitive control, such as

motivation, attention, and time estimation. Thus, it will be impor-

tant for future studies to investigate the subthreshold mecha-

nisms underlying various cognitive functions in PFC, which is

critical for refining models of cognition.
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addgene.org/26969; RRID:Addgene_26969

pENN.AAV.CB7.CI.mCherry.WPRE.RBG Addgene Addgene viral prep 105544-AAV1;
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Experimental models: organisms/strains

C57BL/6J mice The Jackson Laboratory 000664

Recombinant DNA

pCAG-GFP Addgene; Matsuda and Cepko, 2004 Addgene plasmid 11150
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents should be directed to the Lead Contact, Jeremiah Y. Cohen (jeremiah.cohen@jhmi.

edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data and computer code for experimental control and data analysis is available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Six- to 12-week-old male C57BL/6J mice (The Jackson Laboratory, 000664) were used for all electrophysiological and behavioral

experiments. All surgical and experimental procedures were in accordance with the National Institutes of Health Guide for the

Care and Use of Laboratory Animals and approved by the Johns Hopkins University Animal Care and Use Committee.

METHOD DETAILS

Surgery
For whole-cell electrophysiological recordings, mice were surgically implanted with custom-made titanium head plates using dental

adhesive (C&B-Metabond, Parkell) under isoflurane anesthesia (1.0%–1.5% in O2). In a subset of mice, viruses were injected target-

ing dorsal medial PFC (3.0 mm anterior to bregma, 0.5 mm lateral from the midline). Following head plate implantation, the surface of

the skull was covered with silicone elastomer (Kwik-Cast, WPI). For extracellular electrophysiological recordings, a custom-made

microdrive containing 8–16 tetrodes made from nichrome wire (PX000004, Sandvik) positioned inside 39 ga polyimide guide tubes

were implanted, targeted toward the same coordinates as above. Surgery was conducted under aseptic conditions and analgesia

(ketoprofen, 5 mg kg-1 and buprenorphine, 0.05–0.1 mg kg-1) was administered postoperatively. After at least one week of recovery,

mice were water-restricted in their home cage with free access to food.Weight wasmonitored andmaintained within 80%of their full

body weight.

Behavioral task
Mice were head-restrained and positioned in a 38.1 mm acrylic tube in a sound-attenuated chamber. During each conditioning ses-

sion, each trial began with the presentation of one of 3 different olfactory stimuli (A, B, and C), delivered for 0.5 s. Odor A was followed

by an inter-trial interval (ITI). Odor B was followed by a 1 s trace delay, and then a reward (4 mL of 5% sucrose in water). Odor C was
e1 Cell Reports 35, 109082, May 4, 2021
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followed by a 3 s delay, and then a reward. ITIs were drawn from an exponential distribution with a rate parameter of 0.3, with a

maximum cutoff of 5 s. For the task with reward probabilities of 0.5, reward was delivered on randomly chosen trials, but no more

than 3 rewards were delivered consecutively. Odors were delivered with a custom-made olfactometer (Bari et al., 2019).

Each odor was dissolved in mineral oil at 1:10 dilution. Diluted odors (40 ml) were placed on filter-paper housing (Whatman, 2.7 mm

pore size). Odors were p-cymene, (�)-carvone, (+)-limonene, and acetophenone, and differed across mice. Odorized air was further

diluted with filtered air by 1:10 to produce a 1.0 L min-1 flow rate. Licks were detected by charging a capacitor (MPR121QR2, Free-

scale) or using a custom circuit. Task events were controlled with amicrocontroller (ATmega16U2 or ATmega328). Micewere housed

on a 12h dark/12h light cycle (dark from 08:00–20:00) and each performed behavioral tasks at the same time of day, between 09:00

and 18:00.

Extracellular recordings
Extracellular signals were recorded bilaterally frommultiple neurons simultaneously at 30 kHz using a custom-built screw-driven mi-

crodrive with 8 tetrodes (32 channel total). All tetrodes were gold-plated to an impedance of 200–300 kU prior to implantation. Spikes

were bandpass-filtered between 0.3–6 kHz and sorted online and offline using Spikesort 3D (Neuralynx, Inc.) and custom software

written inMATLAB. Tomeasure isolation quality of individual units, we calculated the L-ratio (Schmitzer-Torbert et al., 2005) and frac-

tion of inter-spike interval (ISI) violations within a 2ms refractory period. All single units included in the dataset had an L-ratio less than

0.05 and fewer than 1% ISI violations. We collected data from 1,065 neurons from 3 mice in these experiments.

For silicon-probe recordings, wemade acute penetrations with 64-channel probes (H3, Cambridge Neurotech) at 5-degree angles

relative to the surface of cortex, at depths of 1 mm. Signals were acquired at 20 kHz, bandpass filtered between 0.1 and 6 kHz (Intan

Technologies, RHD2164 headstage), and sorted offline using SpikeSort 3D. Depth estimates were corrected by 0.4 mmdue to tissue

compression during silicon probe penetrations. This value was drawn from post hoc reconstructions.

Patch-clamp recordings
For whole-cell recordings, mice were anesthetized with isoflurane (1%–1.5%) and a craniotomy was made over medial PFC (3.0 mm

anterior to bregma, 0.5 mm lateral from the midline). Both hemispheres were sampled. A thin layer of Kwik-Cast (WPI) was applied

over the skull, mice were returned to their home cage, and were given at least 2 hr to recover before being placed in the behavior

apparatus. Glass electrodes (5–7 MU, fabricated using a PC-10 puller, Narishige) were filled with an internal solution composed

of the following (in mM): 135 potassium gluconate, 4 potassium chloride, 10 sodium phosphocreatine, 4 ATP magnesium salt, 0.3

GTP sodium salt hydrate, 10 HEPES; pH was adjusted to 7.25 using KOH. In a subset of recordings, pCAG-GFP (50–100 ng ml-1),

was included in the internal solution for post hoc cell identification and reconstruction. pCAG-GFP (Matsuda and Cepko, 2004)

was a gift from Connie Cepko (Addgene plasmid 11150).

Electrophysiological signals were low-pass filtered at 10 kHz (Multiclamp 700B, Molecular Devices) and acquired at 20 kHz on a

PCIe-6323 (National Instruments) using Ephus (Vidrio Technologies, LLC). Standard blind patch methods were used to obtain whole

cell recordings. Pipettes were lowered into the brain while high positive pressure (100mmHg) was applied. Once in the brain, positive

pressure was reduced (40 mmHg) and the pipette was advanced down slowly (approximately 2 mm s-1) to search for neurons. If the

pipette resistance increased abruptly by 10%–20%, positive pressure was released andwhole-cell configuration was obtainedwhen

resistance was > 1 GU and stable. Series resistance was < 100 MU. After successful break in, the recording mode was switched to

current clamp (I = 0), and the behavior session was initiated if the membrane potentials were stable over a 1min period after break in.

The recording was terminated if Vm became depolarized above �45 mV, or when the mouse stopped performing the task. After re-

cordings, the patch pipette was slowly withdrawn, a thin layer of Kwik-Cast (WPI) applied again, and the animal returned to its home

cage to recover. To measure the depth-dependent sag ratio and input resistance, a separate group of mice was anesthetized with a

low level of isoflurane (< 1%), current step recording was performed, and post-recording procedures were followed.

Viral injections
To express ChR2 (500 nL for electrophysiological experiments), eGFP, or mCherry (30 nL each for anatomical experiments) in PFC

neurons, we pressure-injected each virus (bilaterally for ChR2) into PFC at a rate of approximately 1 nL s-1 (MMO-220A, Narishige).

The injection pipette was left in place for > 5 min between each injection. The craniotomy was covered with silicone elastomer (Kwik-

Cast, WPI). pAAV-CaMKIIa-hChR2(H134R)-EYFP (Lee et al., 2010) was a gift from Karl Deisseroth (Addgene viral prep 26969-AAV5;

http://addgene.org/26969; RRID:Addgene_26969). pENN.AAV.CB7.CI.mCherry.WPRE.RBG was a gift from James M. Wilson

(Addgene viral prep 105544-AAV1; http://addgene.org/105544; RRID:Addgene_105544). pENN.AAV.CB7.CI.eGFP.WPRE.rBG

was a gift from James M. Wilson (Addgene 105542-AAV1; http://addgene.org/105542; RRID:Addgene_105542).

Optogenetic stimulation with recordings
Mice that were injected with AAV-CaMKII-ChR2 were used for optogenetic perturbation experiments. The optic fiber was inserted

into the recording pipette, enabling direct light projection to the recorded neuron (Katz et al., 2013). After a whole-cell recording

was obtained, a train (10 pulses, 3 ms at 10 Hz) of 473 nm light (Laserglow) stimuli was delivered using a shutter in series with the

laser (Uniblitz) to induce action potentials to identify ChR2-expressing neurons. If the action potentials were elicited reliably with a

short latency (< 3 ms), the light irradiance was lowered to a level at which the membrane potential crossed action potential threshold
Cell Reports 35, 109082, May 4, 2021 e2

http://addgene.org/26969
http://addgene.org/105544
http://addgene.org/105542


Article
ll

OPEN ACCESS
(except in one cell) to generate more than 1 action potential but not bursting during a long pulse (500ms). Light stimulation during the

delay was delivered in 30%–40% of trials, chosen randomly.

Histology
Seven to 10 days after recordings, mice were euthanized with an overdose of ketamine (100mg kg-1), exsanguinated with saline, and

perfused with 4% paraformaldehyde. The brain was removed, post-fixed in the perfusion solution, and cut in 100-mm-thick sagittal

sections. For immunostaining for GFP, rabbit anti-GFP (Invitrogen, 1:1000, 2 hr) primary antibody, followed by donkey Alexa 488 anti-

rabbit (Invitrogen, 1:1000, overnight) secondary antibody was used. All confocal images were taken as tiled z stacks using a confocal

microscope (Zeiss LSM800, ZEN software) at 10X or 20X and reconstructions were done using ImageJ or Fiji (Schindelin et al., 2012).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed with MATLAB (Mathworks) and R (http://www.r-project.org/). All data are presented as mean ± SEM

unless reported otherwise. All statistical tests were two-sided, and multiple-comparison (Bonferroni) corrections were used. For

nonparametric tests, the Wilcoxon rank sum test was used, unless data were paired, in which case the Wilcoxon signed rank test

was used.

For subthreshold Vm measurements, spikes were removed from raw traces by truncating data above spike threshold. Mean Vm

was calculated by averaging spike-removed Vm traces in each time window. E[Vm] and Var[Vm] in Figure 4 were estimated from

the probability distributions of Vm in each time window. Spike threshold was calculated as the value of Vm when d2Vm/dt
2 of each

spike reached its maximum. Mean spike threshold of spontaneous action potentials was used to estimate the time Vm spent below

or over threshold.

To determine the relationship betweenVm and spike output, we first selected spikes that were not preceded by other spikes in a 30-

ms window and calculated spike-triggered Vm by averaging Vm over 10 ms prior to the spike. Spike probability was estimated as a

function of Vm by calculating the probability of spike-triggered Vm in 1-mV bins (Jahn et al., 2011; Petersen and Berg, 2016). Power-

law fitswere based on individual measurements ofVm and the estimated spike probability of each neuron, and fit over the range ofVm.

Time-dependent CV2 was defined as CV2(i) = 2|ISI(i+1)|/(ISI(i)+ISI(i+1)), where ISI(i) is the ith interspike interval (Holt et al., 1996). CV2

above threshold was defined by intervals during which the mean Vm in the 25 ms preceding the spike was over the average spike

threshold.

Sag ratio was measured by hyperpolarizing current steps (1 s,�200 pA, holding at�60 mV) and calculated as a ratio between the

peak amplitude of the initial response (0–0.25 s) and the steady state response (0.75–1 s). Input resistance was obtained by calcu-

lating the slope from the current-voltage curve of the steady state response of hyperpolarizing current steps from �200 pA to 0 pA

(100 pA increments). A frequency adaptation index was calculated as the ratio of the first ISI to the last ISI of the spike trains evoked

by a depolarizing current injection.

Neurons were classified as showing persistent changes in Vm if it was significantly different from baseline using t tests. Neurons

were classified as showing persistent changes in firing rates if area under receiver operating characteristic curves were > 0.65 or <

0.35 throughout the delay on 3 s delay trials. To measure persistent Vm onset and offset times, we fit sigmoidal curves to Vm traces in

each window (Polack et al., 2013). The onset and offset times were defined as the time at which the sigmoids reached half of their

maximum.
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