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SUMMARY

Decisions occur in dynamic environments. In the
framework of reinforcement learning, the probability
of performing an action is influenced by decision var-
iables. Discrepancies between predicted and ob-
tained rewards (reward prediction errors) update
these variables, but they are otherwise stable be-
tween decisions. Although reward prediction errors
have been mapped to midbrain dopamine neurons,
it is unclear how the brain represents decision vari-
ables themselves. We trained mice on a dynamic
foraging task in which they chose between alterna-
tives that delivered reward with changing probabili-
ties. Neurons in the medial prefrontal cortex,
including projections to the dorsomedial striatum,
maintained persistent firing rate changes over long
timescales. These changes stably represented rela-
tive action values (to bias choices) and total action
values (to bias response times) with slow decay. In
contrast, decision variables were weakly repre-
sented in the anterolateral motor cortex, a region
necessary for generating choices. Thus, we define
a stable neural mechanism to drive flexible behavior.

INTRODUCTION

To maximize reward, the nervous systemmakes choices and re-

ceives feedback from the environment. Models of this process

(Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998) contain

two components: brief feedback variables and sustained deci-

sion variables. Feedback, in the form of prediction errors (the

discrepancy between predicted and obtained rewards; Schultz

et al., 1997; Bayer and Glimcher, 2005; Cohen et al., 2012), is

used to update the decision variables. Decision variables, in

turn, prescribe what choices to make and how quickly to make

them. These variables change in value upon feedback (for

example, when a reward is or is not received) but are otherwise

stable in the time between choices. How are these decision vari-

ables stably represented in the nervous system?

Previous studies have found neuronal correlates of decision

variables in the form of brief firing rate changes that decay in
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the time between actions (Samejima et al., 2005; Lau and

Glimcher, 2008; Cai et al., 2011; Wang et al., 2013; Tsutsui

et al., 2016). These observations appear to suggest that these

variables are maintained as stored synaptic weights, which are

transformed into brief changes in firing rates at the time of deci-

sion (Soltani and Wang, 2006; Barak and Tsodyks, 2007; Mon-

gillo et al., 2008). However, the firing rates of individual neurons

themselves could show persistent changes that directly and sta-

bly represent the decision variables. Recent computational work

has proposed this as a viable mechanism for flexible control of

behavior in changing environments (Wang et al., 2018).

To test the hypothesis that persistent changes in firing rates

encode decision variables, we adapted a primate behavioral

task (Sugrue et al., 2004; Lau and Glimcher, 2005; Tsutsui

et al., 2016) and trained mice to forage dynamically at two

possible reward sites. We studied the activity of neurons in the

medial prefrontal cortex (mPFC), a region known to have persis-

tent, working-memory-like correlates, to determine how deci-

sion variables are maintained in the nervous system over long

timescales. There, we found persistent representations of deci-

sion variables. We then asked how this information may inform

action selection. First, we measured activity in the premotor cor-

tex (the anterolateral motor cortex [ALM]), a downstream struc-

ture necessary for actual choices, and saw that it did not inherit

persistent activity from the mPFC. Then we measured outputs

from the mPFC to dorsomedial striatum, a structure thought to

be critical for action selection. We found that decision variables

were sent directly to the dorsomedial striatum.
RESULTS

Reward History Informs Choices and Response Times
We adapted a primate behavioral task (Sugrue et al., 2004; Lau

and Glimcher, 2005; Tsutsui et al., 2016) in which thirsty, head-

restrained mice chose freely between two alternatives that deliv-

ered reward with nonstationary probabilities (Figures 1 and S1).

On each trial, an olfactory ‘‘go’’ cue (or, on 5% of trials, a ‘‘no go’’

cue) was delivered for 0.5 s.Mice licked toward a tube to their left

or right. Critically, the go cue did not instruct mice to make a

particular choice. Depending on their choice, a drop of water

was delivered with a probability that changed randomly after

40–100 trials. This outcome (reward or no reward) was followed

by a random, exponentially distributed inter-trial interval (ITI),

which was followed by the next cue. This task isolates the
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Figure 1. Mice Use Reward History to Drive

Flexible Decisions

(A) Dynamic foraging task in which mice chose

freely between a leftward and rightward lick, fol-

lowed by a drop of water with a probability that

varied.

(B) Reinforcement learning model illustrating the

distinction between decision variables (relative

value, Qr � Ql,pink, and total value, Qr + Ql , blue)

and feedback variables (dðtÞ, the error between

expected and received reward). Left and right

action values (Ql, Qr ) are used to compute choice

direction ðcðtÞÞ and response time and are fol-

lowed by reward on a given trial ðRðtÞÞ.
(C) Example mouse behavior in the ‘‘multiple

probability’’ task. Black (rewarded) and gray (un-

rewarded) ticks correspond to left (below) and

right (above) choices. Black curve, mouse

(smoothed over 5 trials) choices; green curve,

generative model probability of making a right-

ward choice. Gold lines correspond to matching

behavior. Numbers indicate left and right reward

probabilities.

(D) Probability of rightward mouse and generative

model choices around block changes (changes in

reward probabilities) for both task variants. Blocks

with 1:1 reward probabilities were excluded from

this analysis.

(E) Logistic regression coefficients for choice as a

function of reward history (‘‘choice model’’). Error

bars, 95% CI.

(F) Linear regression coefficients for response time

as a function of reward history (‘‘RT model’’). Error

bars, 95% CI.

See also Figure S1.
decision problem to one of adapting choices to the ongoing

reward dynamics of the environment. Indeed, mice rapidly

adjusted their choice patterns as the probabilities of reward

changed (Figures 1C and 1D).

In this task, mice showed approximatematching behavior (Su-

grue et al., 2004; Lau and Glimcher, 2005; Fonseca et al., 2015;

Tsutsui et al., 2016) in which the fraction of choices was similar to

the fraction of rewards obtained from each option (Figures S1A,

S1B, and S1D). Under the conditions used here, matching is a

policy that can maximize reward (Baum, 1981; Sakai and Fukai,

2008).We calculated logistic regressions to determine the statis-

tical dependence of choices on reward history. This analysis

showed a similar pattern as found previously in monkeys: recent

outcomes were weighted more than those further in the past

(Figures 1E and S1E). Response times, a second measure of

behavioral performance, depended on reward history in a quan-

titatively similar way (t = 1:38±0:25 for the choice model,

t = 1:35±0:22 for the response time model, 95% confidence in-

terval [CI]; Figures 1F and S1E). We used two variants of the task,

one in which there were two and another in which there were

several reward probabilities. Mouse behavior was consistent

across both variants of the task (Figure S1E).

Based on the observation that choices and response times de-

pended on reward history, we adapted a generative model from
control theory and reinforcement learning, called Q-learning

(Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Figures

1B–1D, S1C, S1F, and S1G). The model maintains estimates of

the value of making a leftward or rightward action. The chosen

option is updated by learning from the outcome (presence or

absence of reward), and the unchosen option is updated by a

forgetting parameter. Here the decision variables are these ac-

tion values and their arithmetic combinations (Figure 1B). The

latter comprise relative value, which biases choices toward

one alternative (Samejima et al., 2005; Seo and Lee, 2007; Ito

and Doya, 2009; Sul et al., 2010; Cai et al., 2011; Wang et al.,

2013; Murakami et al., 2017), and total value, which modulates

the vigor of choice (how fast to make an action; Figures S1H–

S1J; Niv et al., 2007; Wang et al., 2013; Reppert et al., 2015; Ha-

mid et al., 2016; Tsutsui et al., 2016).

The mPFC Is Specifically Required for Foraging
To determine where these long-lasting decision variables are

represented, we reversibly inactivated themPFC—an area impli-

cated in action-outcome feedback (Kennerley et al., 2006; Mat-

sumoto et al., 2007; Sul et al., 2010; Hyman et al., 2013; Iwata

et al., 2013; Simon et al., 2015; Del Arco et al., 2017; Fiuzat

et al., 2017; Ueda et al., 2017; Ebitz et al., 2018; Nakayama

et al., 2018)—using bilateral injections of muscimol, a GABAA
Neuron 103, 922–933, September 4, 2019 923
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Figure 2. mPFC Drives Choice Bias and

Response Time

(A) Example mPFC inactivation (muscimol injected

during trials is indicated by the curly brace). Gold

indicates the choice with higher probability.

(B) Choice bias after vehicle and muscimol in-

jections within and across mice (Wilcoxon signed-

rank test, p< 0:01).

(C) Cumulative distributions of RTs after vehicle

(solid) and muscimol (dashed) injections (vehicle

mean, 581 ± 2 ms; median, 553 ms; muscimol

mean, 672 ± 4 ms; median, 618 ms; Wilcoxon

rank-sum test; p< 0:0001).

(D) Two-alternative forced choice (2AFC) task in

which two odors signaled leftward or rightward

choice.

(E) Mean fraction correct in the 2AFC task, with

vehicle or muscimol injections, within and across

mice. Inactivation produced a small reduction in

the fraction of correct choices (Wilcoxon signed-

rank test, p< 0:05).

(F) Inactivation did not bias choices in this task

(Wilcoxon signed-rank test, p> 0:3).

(G) Inactivation increased response time (vehicle

mean, 542 ± 3 ms; median, 533 ms; muscimol

mean, 586 ± 5 ms; median, 556 ms; Wilcoxon

rank-sum test; p< 0:0001).

(H) Dynamic classical conditioning task in which a

single odor was followed by a delayed reward with

a nonstationary probability.

(I) Example session in which latency to first lick

following the odor varied with the probability of

reward. Gold lines correspond to high-probability

blocks.

(J) Inactivation did not slow the latency to first lick

(4 mice; vehicle mean, 691± 6 ms; median,

517 ms; muscimol mean, 647 ± 7 ms; median,

550 ms; Wilcoxon rank-sum test; p > 0.7).

See also Figure S2.
receptor agonist. Following mPFC inactivation, mice showed

both a strong choice bias and slowed response times (Figures

2A–2C). The direction of bias was idiosyncratic across mice (Fig-

ure S2). To test whether these effects were specific to the dy-

namic foraging task, we developed two other behavioral tasks

to rule out general motor disruptions. In the first, we trained

mice on a two-alternative forced choice task in which they licked

leftward to receive a reward following one olfactory stimulus and

rightward to receive a reward following a different olfactory stim-

ulus. Inactivating themPFC in this task produced no comparable
924 Neuron 103, 922–933, September 4, 2019
change in choice bias (Figures 2D–2G).

However, there was a slowing of

response times, consistent with a

decrease in overall vigor (Wang et al.,

2013). In the second task, we trained

mice on a classical conditioning para-

digm in which an olfactory stimulus pre-

dicted a delayed reward. Importantly, un-

like in the tasks described above, the time

of reward delivery was independent of the

mouse’s response time, so faster move-
ments did not result in earlier receipt of reward. We varied the

probability of reward over time so that mice would show a large

range of latencies to first lick (Figures 2H and 2I). Inactivating the

mPFCdid not produce a significant increase in latency to first lick

in this task (Figure 2J). Thus, the results across all three tasks

indicate that computations in the mPFC are specific for behav-

ioral tasks that require the mouse to select actions using a local

estimate of reward history. Moreover, they suggest the existence

of a relative-value signal that biases choices and a total-value

signal that biases response times.
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Figure 3. Background Persistent Activity in

the mPFC Correlates with Relative Value

(A) Example neuronal activity relative to go cues

(each tick is an action potential). Trials proceed

downward. Scale bar, 50 trials. The curly brace

indicates the analysis window.

(B) Relative value ðQl �QrÞ and firing rate (gray,

smoothed in black) in the 1 s before go cues for the

same neuron.

(C) Left: firing rate (Z score) for pure relative-value

neurons (the inset shows firing rates split by neu-

rons that increase or decrease activity; neurons

that decreased activity were sign-flipped and

combined with those that increased activity).

Right: the same neurons split by the direction of

the previous (top) or next (bottom) choice (left,

dark shading; right, light shading).

(D) Comparison of changes in firing rate (black, in

which neurons with increasing or decreasing ac-

tivity are combined, mean ± SEM) and model

relative value (pink) following rewards (water drop)

or no rewards (Ø) for left choices (cl ) and right

choices (cr ).

(E) Relative-value neurons predict choice (top) but

not response time (bottom).

Shading denotes SEM. See also Figures S3

and S4.
The mPFC Represents Decision Variables over Long
Timescales
To determine how persistent decision variables are represented

in the mPFC, we recorded action potentials from 3,073 mPFC

neurons in 14 mice, using 8–16 tetrodes per mouse (Figures 3

and S3). We observed changes in firing rates during the ITIs, last-
Neu
ing for many trials, as well as changes in

firing rates occurring around the times of

choices and outcomes (Figure 3). We

focused on the slower (across tens of

seconds to minutes) changes in firing

rates and compared them with the deci-

sion variables extracted from the models.

We calculated generalized linear

models (Poisson regressions) to predict

spike counts at the end of ITIs (the 1 s

before the next go cue).We used three re-

gressors: relative value, total value, and

future action. Relative value was defined

as the difference between right and left

action values ðQr � QlÞ. Total value was

defined as the sum of right and left action

values ðQr + QlÞ. We found that a large

fraction of mPFC neurons (2,401 of

3,073, 78%) had persistent activity in

the ITIs that tracked these two evolving

decision variables. Of these, some (770

of 2,401, 32%) had significant regression

coefficients only for one decision variable

(‘‘pure’’ neurons). We found similar re-

sults in neurons recorded during both
task variants (Figure S3J). We next analyzed these pure popula-

tions in more detail.

One population of neurons (252 with significant regression

coefficients only for relative value) persistently and monotonically

represented relative value, with roughly equal numbers preferring

Qr �Ql and Ql �Qr (exact binomial test, 0:50± 0:03, 95%
ron 103, 922–933, September 4, 2019 925
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Figure 4. Background Persistent Activity in

the mPFC Correlates with Total Value

(A) Example neuronal activity relative to go cues

(each tick is an action potential). Trials proceed

downward. Scale bar: 50 trials. Curly brace in-

dicates analysis window.

(B) Total value (Qr + Ql) and firing rate (gray;

smoothed in black) in the 1 s before go cues for the

same neuron.

(C) Left: firing rate (z-score) for pure total-value

neurons (inset shows firing rates split by neurons

that increase or decrease activity; neurons that

decreased activity were sign-flipped and com-

bined with those that increased activity). Right: the

same neurons split by the direction of the previous

(top) or next (bottom) choice (left, dark shading,

right, light shading).

(D) Comparison of changes in firing rate (black, in

which neurons with increasing or decreasing ac-

tivity are combined, mean ± SEM) and model total

value (blue) following rewards (water drop) or

no rewards (B), for left choices (cl) and right

choices (cr).

(E) Total-value neurons predict RT (bottom) but not

choice (top).

Shading denotes SEM.
CI, p> 0:9; Figures 3A–3C), distributed equally across hemi-

spheres (proportion test, c2
1 = 1:85; p> 0:16; Figure S3F). To

analyze these neurons together, we sign-flipped those preferring

Ql � Qr , treating them as preferring Qr � Ql. Importantly, rela-

tive-value coding did not arise because of premotor activity

because tuning curves were similar regardless of future action
926 Neuron 103, 922–933, September 4, 2019
(t84;776 = � 1:60;p> 0:1; Figure 3C). Simi-

larly, the activity was not a long-lasting

consequence of past actions because

tuning curves were similar regardless of

previous action (t84;776 = � 0:43;p> 0:6;

Figure 3C). An important prediction of the

Q-learningmodel is that firing rates should

be updated in a quantitative way following

action-outcome pairs. Remarkably, rela-

tive-value neurons matched quantitative

predictions from the model (Figure 3D).

Also, as predicted from the model, rela-

tive-value neuron firing rates scaled with

choice but not response time (PðcðtÞ= rÞ
over Z-scored firing rate logistic slope,

0:13±0:014, 95% CI; response time over

Z-scored firing rate linear slope,

0:0053±0:0066, 95% CI; Figure 3E).

Importantly, this reflects choicebias rather

than premotor activity, similar to the bias

underlying a weighted coin.

A second population of neurons (518

with significant regression coefficients

only for total value) persistently andmono-

tonically represented total value, with
roughly equal numbers preferring Qr +Ql and �Qr �Ql

(exact binomial test, 0:47±0:02, 95% CI, p> 0:20; Figures 4A–

4C), distributed equally across hemispheres (proportion test,

c2
1 = 0:00, p> 0:9; Figure S3F). Similar to relative-value

neurons, total-value activity was not a consequence of past

(t173;617 = � 0:92, p> 0:3) or future actions (t173;617 = 0:96,
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Figure 5. Relative-Value Signals Are Persis-

tent and Stable in Time, and Total-Value Sig-

nals Are Persistent but Decay over Time

(A) Firing rates of relative-value neurons during

ITIs, split by quintiles of relative value. Scale bar,

0.1 Z score.

(B–D) Firing rates of total-value neurons during

ITIs, split by quintiles of total value (B). The differ-

ence across quintiles (averaged across adjacent

quintiles) remained stable over time for relative-

value (C; linear slope, 2:6310�4 ± 1:8310�5 Z

score s�1, 95% CI) but not total-value (D; linear

slope, �1:9310�3 ± 1:6310�5 Z score s�1, 95%

CI) neurons.

(E) The probability that the model choice matches

themouse’s choice remains stable as a function of

previous ITI (linear slope, �1:3310�3 ± 4:6310�4

probability s�1, 95% CI).

(F) Response time increases following longer ITIs

(linear slope, 0:036±0:0019 Z score RT s�1,

95% CI).

Shading denotes SEM. Neurons were sign-flipped

as in Figures 3C and 4C. See also Figure S5.
p> 0:3; Figure 4C). Total-value neuron firing rate changes also fit

the predicted changes in total value from the Q-learning model

(Figure 4D). In contrast to relative-value neurons, total-value

neuron firing rates scaled with response time but not choice

(PðcðtÞ= rÞ over Z-scored firing rate logistic slope, 0:005±

0:009, 95% CI; response time over Z-scored firing rate linear

slope, � 0:033±0:005, 95%CI; Figure 4E).Wedid not find similar

evidence for representations of action values alone (Figure S4).

Thus, we demonstrate the existence of persistent activity in two

groups of neurons that predicts choices and response times,

quantitatively consistent with control signals used to drive flexible

behavior.

Relative-Value Signals Are More Stable Than Total-
Value Signals
A key prediction of the behavioral model is that decision vari-

ables remain stable between the times of feedback. We asked

how robust relative- and total-value representations were: did

they decay during long ITIs, or were they stable? We split trials

into quintiles of relative value and analyzed the firing rates of all

1,548 relative-value neurons (Figures 5A and S5). We analyzed

all relative-value neurons here to include as many long ITIs as
Neu
possible. Relative-value neurons showed

persistent activity that remained stable

through ITIs as long as 15 s, consistent

with model predictions (Figure 5C). We

found similar stability in pure relative-

value neurons (Figure S5E).

We next split trials into quintiles of total

value and analyzed the firing rates of all

1,880 total-value neurons (Figures 5B

and S5). Total-value neurons showed

persistent activity that decayed during

long ITIs (Figure 5D). We found a

similar decay in pure total-value neurons
(Figure S5F). This result indicates that the representation of total

value was unstable, in contrast to the representation of rela-

tive value.

The observation that relative-value persistent activity was sta-

ble, whereas total-value persistent activity decayed, makes a

specific prediction about the dependence of choices (computed

from relative value) and response times (computed from total

value); the probability of making an upcoming choice given a

particular history of choices and rewards should not depend

on the time elapsed since the previous choice. In contrast, the

response time should vary with the time since the previous

choice. Indeed, we found that model choices and mouse

choices only weakly depended on previous ITIs (Figure 5E),

whereas response times slowed with increasing previous ITIs

(Figure 5F). Consistent with the prediction that the latter effect

depended on total-value neurons, it was abolished following

mPFC inactivation (Figures S5H–S5J).

Decision Variables Are Only Weakly Represented in the
Premotor Cortex
Where are decision variables in the temporal flow of information

in the neocortex? To address this, we measured activity in the
ron 103, 922–933, September 4, 2019 927



A B Figure 6. ALM Weakly Represents Relative

and Total Value

(A) Example neuronal activity relative to go cues

(each tick represents an action potential). Trials

proceed downward. Scale bar, 50 trials. The curly

brace indicates the analysis window. Bottom:

average firing rates of the same neuron during

leftward and rightward choice trials.

(B) Cumulative distribution functions (CDFs) of jz j
values from generalized linear models for relative

(top left) and total value (bottom left) were larger

for the mPFC than for the ALM (Wilcoxon rank-

sum tests, p< 10�10). Poisson regressions use z

statistics to determine significance. For reference,

jz j = 1:96 is significant at p = 0:05. Right: a larger

fraction of neurons significantly encoded relative

(top; proportion test, c2
1 = 90:9, p< 10�10) and

total value (bottom; c2
1 = 158:3, p< 10�10) in the

mPFC compared with the ALM.

See also Figure S6.
ALM (the tongue premotor cortex), which is necessary for gener-

ating reward-guided licks (Komiyama et al., 2010; Guo et al.,

2014; Li et al., 2015). Consistent with this observation, we

observed firing rates at the time of choice that distinguished be-

tween leftward and rightward licks (Figures 6A and S6A; 277 of

537 neurons, 52%). We compared the strength of relative- and

total-value regressors in the mPFC and ALM in the 1 s pre-cue

window. Relative and total value were representedmore strongly

in the mPFC than in the ALM, and fewer neurons in the ALM

showed persistent activity that tracked relative or total value

(Figure 6B; 28.1% significant for relative value, 32.0% significant

for total value). These findings demonstrate that decision vari-

ables are not robustly represented in the premotor cortex.

Relative and Total Values Are Sent to the Dorsomedial
Striatum
If persistent decision variables are not inherited by the premotor

cortex, then what structures receive this information from the

mPFC to select actions? The mPFC contains diverse cell types,

including neurons that project to multiple brain regions. A prom-

inent projection target is the dorsomedial striatum, which is the

main input structure of the basal ganglia and is thought to be

involved in action selection (Samejima et al., 2005; Balleine

et al.,2007; Kim et al., 2009, 2013; Kimchi and Laubach, 2009;

Stephenson-Jones et al., 2011; Seo et al., 2012; Tai et al.,

2012; Ito and Doya, 2015; Morita et al., 2016; Shipp, 2017; Ger-

raty et al., 2018). We found these corticostriatal neurons across

layers in themPFC (Figures 7A, 7B, and S7A–S7D), in agreement

with previous work (Anastasiades et al., 2018).

First we asked whether mPFC projections to the dorsomedial

striatum were critical for dynamic foraging. We expressed

hM4D(Gi), an inhibitory receptor activated by clozapine-N-oxide

(Krashes et al., 2011), exclusively in corticostriatal neurons
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(Figure S7B). Inactivation of corticostriatal neurons produced a

significant increase in bias and slowed response times (Figures

7C and 7D), consistent with global inactivation of the mPFC

(Figure 2).

Next we asked whether neurons projecting to the dorso-

medial striatum represented the two decision variables we

observed in themPFC. To record activity selectively from cortico-

striatal neurons, we expressed Chronos, a fast-activating light-

sensitive protein (Klapoetke et al., 2014), in these neurons

by injecting a retrogradely infecting adeno-associated virus

(AAVretro; Tervo et al., 2016) into the dorsomedial striatum (Fig-

ures 7E and S7C). This resulted in expression of Chronos in neu-

rons across layers (Figure S7D). We implanted an optic fiber

over the striatum and delivered light stimuli (473 nm) to excite

Chronos and retrogradely evoke action potentials.

Corticostriatal neurons were identified using collision tests

(Figure 7F). Using this approach, axonal stimulation failed to

evoke retrograde action potentials when there was a sponta-

neous action potential preceding the stimulation (‘‘collision’’).

In total, we identified 20 corticostriatal neurons with this tech-

nique. We used somatic ‘‘tagging,’’ where we stimulated cell

bodies, in another set of experiments to identify an additional

15 corticostriatal neurons (Figures S7E–S7J).We found no differ-

ences in neurons identified with either method (Figure S7L) and

therefore combined them into one dataset of 35 corticostriatal

neurons. Consistent with our observations of unidentified

mPFC neurons, 25 of 35 corticostriatal neurons (71%) showed

long-lasting persistent activity that represented relative and total

value (Figures 7G and 7H). Thus, two key decision variables

from the theory, used to decide which option to choose and

how fast to make the response, are sent from the mPFC into

the striatum, a region thought to be involved in action selection

itself (Figure 8).
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Figure 7. Neurons Projecting to the Dorsomedial Striatum Encode Decision Variables Using Persistent Activity

(A) Localization of corticostriatal neurons. AAVretro-Cre was injected into an Ai9 mouse. Scale bar, 500 mm. The box denotes the region of recording sites.

(B) Distribution of somata of labeled corticostriatal neurons. Marginal distributions are shown for each mouse (gray) and all mice (black).

(C) Schematic of inactivation of mPFC projections to the dorsomedial striatum, using inhibitory designer receptors exclusively activated by designer drugs

(DREADDs).

(D) Left: inactivation of these neurons increased choice bias in DREADD but not control mice (Wilcoxon rank-sum test, p< 0:05). Right: inactivation slowed

response times. We calculated the change in response time induced by CNO relative to vehicle in DREADD and control mice. DRT is the difference between

DREADD and control mice (95% bootstrapped CI).

(E) Schematic of the experiment to identify corticostriatal neurons.

(F) Example of a corticostriatal neuron, identified using collision tests. Top: action potentials evoked by optical axonal stimulation several milliseconds after

spontaneous action potentials. Center: failure to evoke action potentials briefly after spontaneous ones (collisions). Bottom: action potentials evoked following

intervals without spontaneous firing.

(G) Example corticostriatal neuron with persistent activity encoding decision variables. Scale bar, 50 trials.

(H) Corticostriatal neurons encoded relative and total value using background firing rates.

See also Figure S7.
DISCUSSION

Theories of cognition propose that the nervous systemmaintains

stable representations of decision variables used to guide action

selection and to invigorate action execution. Here we find that

the firing rates of individual mPFC neurons quantitatively repre-

sent these key variables. We discovered a remarkably stable

relative-value representation used to bias upcoming actions

and a stable but decaying total-value representation used to

drive the speed of actions.

What is the circuit logic that transforms relative and total value

into actions? The mPFC is not a premotor structure, as we

demonstrated with a set of inactivation experiments (Figure 2).

When we recorded from the tongue premotor cortex, we

observed a dramatic reduction in the persistent representation

of decision variables. A similar dissociation was found in an ac-

tion timing task between the mPFC and secondary motor cortex

(Murakami et al., 2017). This suggests that structures upstream

of the ALM inherit these value signals to bias actions. One major

route from themPFC to the ALM is through the basal ganglia and

thalamus, where outputs can directly modulate ALM activity.

Indeed, we discovered that mPFC projections to the dorsome-

dial striatum are necessary for normal choices and response

times and that both relative and total value are sent along this

pathway. Because the basal ganglia can add variability to input
signals (Woolley et al., 2014), cortico-basal ganglia loops may

function to stochastically convert relative value into discrete

choices.

The dorsomedial striatum is likely only one of many down-

stream structures to receive relative- and total-value signals.

For example, serotonergic neurons in the dorsal raphe maintain

value representations over similarly long timescales (Cohen

et al., 2015). Because the mPFC projects monosynaptically to

serotonergic neurons (Pollak Dorocic et al., 2014; Ogawa et al.,

2014; Weissbourd et al., 2014), serotonergic neurons likely

receive these decision variables as inputs. Indeed, stimulation

of these neurons modulates decisions in a dynamic foraging

task (Lottem et al., 2018).

The studies that inspired our work did not report similar persis-

tent representations in ITIs (Sugrue et al., 2004; Lau and

Glimcher, 2008; Tsutsui et al., 2016). A key difference between

these tasks and ours is the manner in which they can be solved.

In the primate experiments, monkeys made saccades to targets

that changed position randomly, meaning specific actions to

obtain reward could not be planned. This required monkeys to

solve the task in object space, not action space. In our task,

the lick ports (conceptually analogous to the saccade targets) re-

mained fixed, meaning the task could be solved in action space.

Interestingly, subtle persistent changes in firing rates have been

reported in tasks that could be solved in action space (Stalnaker
Neuron 103, 922–933, September 4, 2019 929
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Figure 8. Summary of Information Flow during Dynamic Decision

Making
(A) Model reproduced from Figure 1B.

(B) Schematic of experimental results, in which choices ðcðtÞÞ and reward

prediction errors ðdðtÞÞ are brief and induce stable changes in relative value and

decaying changes in total value.

(C) Localization of persistent decision variables in mPFC projections to the

dorsomedial striatum; brief signals in the ALM and from dopaminergic (DA)

neurons instantiate choices and reward prediction errors. The dashed arrow

stylizes recurrent computations in cortico-basal ganglia loops.
et al., 2010; Iwata et al., 2013). We hypothesize that this feature

of our task, combined with a convincing generative model of

behavior and the presence of long ITIs, allowed us to observe

and quantify persistent activity. Importantly, this activity is qual-

itatively distinct from a population code in which information is

tiled across neurons, across time—a phenomenon more typi-

cally observed in the rodent cortex (Harvey et al., 2012).

We did not observe similar evidence for persistent action-

value representations (that is, Qr and Ql). Where are these ac-

tion values represented? One possibility is the striatum, where

action values have been observed as transient changes in firing

rates (Samejima et al., 2005). Another possibility is that the brain

may use a different algorithm to solve this task (Elber-Dorozko

and Loewenstein, 2018; Li and Daw, 2011). For example, a to-

tal-value-like signal can be obtained by leaky integration of re-

wards without needing to compute action values. Although we

do not make any claims about the exact algorithm underlying

behavior, our neural recordings, combined with inactivation of

the mPFC, allow us to conclude that the mPFC contains the in-

formation needed to bias the direction and response times of

decisions. This logic has been seen before in sensory accumu-

lation of evidence paradigms in which one brain region supports

both the direction and response times of decisions (Gold and

Shadlen, 2007).

Many individual neurons jointly encoded relative and total

value. Because action values, in principle, can be recovered as

linear combinations of relative and total value, the lack of evi-
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dence for action-value neurons suggests that individual mPFC

neurons nonlinearly represent relative and total value. Similar

nonlinear coding has been proposed to underlie complex cogni-

tion, increasing the computational flexibility of the PFC (Rigotti

et al., 2013). We also observed an equal distribution of relative-

value neurons with larger (or smaller) responses for Qr �Ql (or

Ql � Qr ) in both hemispheres. The lack of hemispheric speci-

ficity—what may be expected for motor regions—suggests

that these relative-value representations are not hard-wired

and are instead converted into a motor plan by downstream re-

gions. Indeed, actions may be arbitrary, requiring flexible cir-

cuitry to encode their relative values.

We found that removing relative value by inactivating the

mPFC disrupted flexible decision making. In primates, the

rostral cingulate motor area is crucial for reward history-depen-

dent actions but not for cued actions (Shima and Tanji, 1998).

This is remarkably consistent with our inactivation findings. It

is well appreciated that decision making is under the control

of several systems. Flexible, goal-oriented behavior is known

to require the mPFC and dorsomedial striatum. Inflexible,

habitual behavior relies more on the dorsolateral striatum (Bal-

leine and O’Doherty, 2010). In our experiments, inactivating

the mPFC removed the goal-directed system, unmasking a sub-

optimal, likely stimulus-driven strategy. This idea of separate

controllers can explain why pupil dynamics can predict the di-

rection of bias following mPFC inactivation. The pupil is known

to encode variables such as effort (Varazzani et al., 2015), and

differences in pupil dynamics for different choices may relate

to a low-level bias. The multiple-controller hypothesis also ex-

plains why mPFC inactivation had a minimal effect in the two-

alternative forced choice task because stimulus-driven behavior

maximizes reward.

What is the function of a total-value signal? We found that to-

tal value predicted trial-by-trial response times, consistent with

theoretical predictions relating reward rates and response vigor

(Niv et al., 2007; Yoon et al., 2018). Total value should invigorate

behavior generally, not just response times. It is likely, then, that

our movement measurements contain substantial information

about the vigor state of the mouse. Interpreted this way, it

makes sense that including movements as additional regres-

sors should reduce total-value representations (which were

reduced more than those of relative value); the two are corre-

lated. This invigoration hypothesis also explains our inactivation

experiments. Because total value modulates the speed of ac-

tions, its removal should uniformly slow response times, an ef-

fect we observed. One of our more intriguing findings was the

slow decay of total-value neural signals, predicting the slowing

of response times with increasing ITIs (Figures 5B, 5D, and 5F).

This suggests that total value is computed as a rate, increasing

upon receipt of reward and decaying in real time (Haith et al.,

2012). Importantly, we observed the same effect in the two-

alternative forced choice task, in which choices could not be

prepared because of randomized stimulus presentation. This

means that the ITI-dependent reduction in response times

was not due to disengagement of a motor preparatory signal.

Our finding that mPFC inactivation disrupted this effect strongly

supports our interpretation of the signal as representing to-

tal value.



Our results indicate that neuronal circuits in the neocortex can

adjust very flexibly to ongoing task demands while nevertheless

maintaining robustness over time. Ultimately, these decision var-

iables, updated by feedback like that observed in dopaminergic

neurons (Morris et al., 2006; Parker et al., 2016), could allow the

brain to maximize reward in a dynamic world.
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Nakayama, H., Ibañez-Tallon, I., and Heintz, N. (2018). Cell-type-specific con-

tributions of medial prefrontal neurons to flexible behaviors. J. Neurosci. 38,

4490–4504.

Niv, Y., Daw, N.D., Joel, D., and Dayan, P. (2007). Tonic dopamine: opportunity

costs and the control of response vigor. Psychopharmacology (Berl.) 191,

507–520.

Ogawa, S.K., Cohen, J.Y., Hwang, D., Uchida, N., and Watabe-Uchida, M.

(2014). Organization of monosynaptic inputs to the serotonin and dopamine

neuromodulatory systems. Cell Rep. 8, 1105–1118.

Parker, N.F., Cameron, C.M., Taliaferro, J.P., Lee, J., Choi, J.Y., Davidson,

T.J., Daw, N.D., and Witten, I.B. (2016). Reward and choice encoding in termi-

nals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci.

19, 845–854.

Pollak Dorocic, I., F€urth, D., Xuan, Y., Johansson, Y., Pozzi, L., Silberberg, G.,

Carlén, M., andMeletis, K. (2014). A whole-brain atlas of inputs to serotonergic

neurons of the dorsal and median raphe nuclei. Neuron 83, 663–678.

Quiroga, R.Q., Nadasdy, Z., and Ben-Shaul, Y. (2004). Unsupervised spike

detection and sorting with wavelets and superparamagnetic clustering.

Neural Comput. 16, 1661–1687.

Reppert, T.R., Lempert, K.M., Glimcher, P.W., and Shadmehr, R. (2015).

Modulation of saccade vigor during value-based decision making.

J. Neurosci. 35, 15369–15378.

Rigotti, M., Barak, O., Warden, M.R., Wang, X.J., Daw, N.D., Miller, E.K., and

Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks.

Nature 497, 585–590.

Rolls, E.T., Grabenhorst, F., and Deco, G. (2010). Choice, difficulty, and con-

fidence in the brain. Neuroimage 53, 694–706.

Sakai, Y., and Fukai, T. (2008). When does rewardmaximization lead tomatch-

ing law? PLoS ONE 3, e3795.

Samejima, K., Ueda, Y., Doya, K., and Kimura, M. (2005). Representation of

action-specific reward values in the striatum. Science 310, 1337–1340.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,

T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an

open-source platform for biological-image analysis. Nat. Methods 9, 676–682.

Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K., and Redish, A.D.

(2005). Quantitative measures of cluster quality for use in extracellular record-

ings. Neuroscience 131, 1–11.

Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of pre-

diction and reward. Science 275, 1593–1599.

Seo, H., and Lee, D. (2007). Temporal filtering of reward signals in the dorsal

anterior cingulate cortex during a mixed-strategy game. J. Neurosci. 27,

8366–8377.

Seo, M., Lee, E., and Averbeck, B.B. (2012). Action selection and action value

in frontal-striatal circuits. Neuron 74, 947–960.

http://refhub.elsevier.com/S0896-6273(19)30529-X/sref24
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref24
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref24
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref25
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref25
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref26
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref26
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref26
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref27
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref27
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref27
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref28
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref28
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref29
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref29
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref29
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref30
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref30
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref30
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref31
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref31
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref31
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref32
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref32
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref33
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref33
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref33
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref34
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref34
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref35
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref35
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref35
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref35
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref36
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref36
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref36
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref36
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref37
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref37
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref37
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref37
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref38
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref38
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref39
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref39
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref88
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref88
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref40
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref40
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref41
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref41
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref41
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref42
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref42
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref42
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref43
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref43
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref44
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref44
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref44
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref44
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref45
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref45
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref45
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref45
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref46
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref46
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref46
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref47
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref47
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref48
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref48
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref48
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref49
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref49
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref49
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref50
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref50
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref50
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref51
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref51
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref51
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref52
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref52
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref52
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref53
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref53
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref53
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref54
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref54
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref54
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref54
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref55
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref55
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref55
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref55
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref56
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref56
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref56
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref57
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref57
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref57
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref58
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref58
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref58
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref59
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref59
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref60
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref60
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref61
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref61
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref62
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref62
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref62
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref63
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref63
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref63
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref64
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref64
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref65
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref65
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref65
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref66
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref66


Shima, K., and Tanji, J. (1998). Role for cingulate motor area cells in voluntary

movement selection based on reward. Science 282, 1335–1338.

Shipp, S. (2017). The functional logic of corticostriatal connections. Brain

Struct. Funct. 222, 669–706.

Shupe, J.M., Kristan, D.M., Austad, S.N., and Stenkamp, D.L. (2006). The eye

of the laboratory mouse remains anatomically adapted for natural conditions.

Brain Behav. Evol. 67, 39–52.

Simon, N.W., Wood, J., and Moghaddam, B. (2015). Action-outcome relation-

ships are represented differently by medial prefrontal and orbitofrontal cortex

neurons during action execution. J. Neurophysiol. 114, 3374–3385.

Soltani, A.R., and Wang, X.J. (2006). A biophysically based neural model of

matching law behavior: melioration by stochastic synapses. J. Neurosci. 26,

3731–3744.

Stalnaker, T.A., Calhoon, G.G., Ogawa, M., Roesch, M.R., and Schoenbaum,

G. (2010). Neural correlates of stimulus-response and response-outcome as-

sociations in dorsolateral versus dorsomedial striatum. Front. Integr. Neurosci.

4, 12.

Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B., and

Grillner, S. (2011). Evolutionary conservation of the basal ganglia as a common

vertebrate mechanism for action selection. Curr. Biol. 21, 1081–1091.

Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C.B., Carandini, M., and

Harris, K.D. (2019). Spontaneous behaviors drive multidimensional, brainwide

activity. Science 364, 255.

Sugrue, L.P., Corrado, G.S., and Newsome, W.T. (2004). Matching behavior

and the representation of value in the parietal cortex. Science 304, 1782–1787.

Sul, J.H., Kim, H., Huh, N., Lee, D., and Jung, M.W. (2010). Distinct roles of ro-

dent orbitofrontal and medial prefrontal cortex in decision making. Neuron 66,

449–460.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction

(MIT Press).
Tai, L.H., Lee, A.M., Benavidez, N., Bonci, A., and Wilbrecht, L. (2012).

Transient stimulation of distinct subpopulations of striatal neurons mimics

changes in action value. Nat. Neurosci. 15, 1281–1289.

Tervo, D.G.R., Hwang, B.Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K.D.,

Lindo, S., Michael, S., Kuleshova, E., Ojala, D., et al. (2016). A designer AAV

variant permits efficient retrograde access to projection neurons. Neuron 92,

372–382.

Tsutsui, K., Grabenhorst, F., Kobayashi, S., and Schultz, W. (2016). A dynamic

code for economic object valuation in prefrontal cortex neurons. Nat.

Commun. 7, 12554.

Ueda, Y., Yamanaka, K., Noritake, A., Enomoto, K., Matsumoto, N., Yamada,

H., Samejima, K., Inokawa, H., Hori, Y., Nakamura, K., and Kimura, M. (2017).

Distinct functions of the primate putamen direct and indirect pathways in

adaptive outcome-based action selection. Front. Neuroanat. 11, 66.

Varazzani, C., San-Galli, A., Gilardeau, S., and Bouret, S. (2015). Noradrenaline

and dopamine neurons in the reward/effort trade-off: a direct electrophysio-

logical comparison in behaving monkeys. J. Neurosci. 35, 7866–7877.

Wang, A.Y., Miura, K., and Uchida, N. (2013). The dorsomedial striatum en-

codes net expected return, critical for energizing performance vigor. Nat.

Neurosci. 16, 639–647.

Wang, J.X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J.Z.,

Hassabis, D., and Botvinick, M. (2018). Prefrontal cortex as a meta-reinforce-

ment learning system. Nat. Neurosci. 21, 860–868.

Weissbourd, B., Ren, J., DeLoach, K.E., Guenthner, C.J., Miyamichi, K., and

Luo, L. (2014). Presynaptic partners of dorsal raphe serotonergic and

GABAergic neurons. Neuron 83, 645–662.

Woolley, S.C., Rajan, R., Joshua, M., and Doupe, A.J. (2014). Emergence of

context-dependent variability across a basal ganglia network. Neuron 82,

208–223.

Yoon, T., Geary, R.B., Ahmed, A.A., and Shadmehr, R. (2018). Control of

movement vigor and decision making during foraging. Proc. Natl. Acad. Sci.

USA 115, E10476–E10485.
Neuron 103, 922–933, September 4, 2019 933

http://refhub.elsevier.com/S0896-6273(19)30529-X/sref67
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref67
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref68
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref68
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref69
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref69
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref69
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref70
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref70
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref70
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref71
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref71
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref71
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref72
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref72
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref72
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref72
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref73
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref73
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref73
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref74
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref74
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref74
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref75
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref75
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref76
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref76
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref76
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref77
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref77
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref78
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref78
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref78
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref79
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref79
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref79
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref79
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref80
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref80
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref80
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref81
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref81
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref81
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref81
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref82
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref82
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref82
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref83
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref83
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref83
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref84
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref84
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref84
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref85
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref85
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref85
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref86
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref86
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref86
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref87
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref87
http://refhub.elsevier.com/S0896-6273(19)30529-X/sref87


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAVrg-SynChronos-GFP Klapoetke et al., 2014 Addgene AAVrg; 59170-AAVrg

AAVrg-pmSyn1-EBFP-Cre Madisen et al., 2015 Addgene AAVrg; 51507-AAVrg

pAAV-hSyn-DIO-hM4D(Gi)-mCherry Krashes et al., 2011 Addgene AAV5; 44362-AAV5

rAAV5-Ef1a-DIO-hChR2(H134R)-EFYP UNC Vector Core N/A

Chemicals, Peptides, and Recombinant Proteins

Muscimol hydrobromide Sigma-Aldrich Cat #: G019

Muscimol powder Sigma-Aldrich Cat #: M1523

Muscimol, BODIPY TMR-X Conjugate Sigma-Aldrich Cat #: M23400

Clozapine-n-oxide NIMH Chemical Synthesis and Drug

Supply Program

C-929

Experimental Models: Organisms/Strains

Mouse: wild-type (C57BL/6J) The Jackson Laboratory IMSR Cat# JAX:000664,

RRID:IMSR_JAX:000664

Mouse: B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J The Jackson Laboratory IMSR Cat# JAX:007909,

RRID:IMSR_JAX:007909

Software and Algorithms

MATLAB v.2016b MathWorks RRID: SCR_001622

R v.3.3.2 The R Foundation for Statistical Computing https://www.r-project.org/

Permutation test Elber-Dorozko and Loewenstein, 2018 N/A

Fiji Schindelin et al., 2012 N/A

FaceMap Stringer et al., 2019 https://github.com/MouseLand/

FaceMap

Other

CMOS camera Thorlabs Cat #: DCC1545M

Telecentric lens (1.0x) Edmund Optics Cat #: 58-430

Manual iris lens Computar Cat #: M1614-MP2

Micromanipulator Thorlabs Cat #: DT12XYZ

Nichrome microwire Sandvik PX000004
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to the Lead Contact, Jeremiah Y. Cohen (jeremiah.cohen@

jhmi.edu).

METHOD DETAILS

Animals and surgery
Weused 36male C57BL/6Jmice (The Jackson Laboratory, 000664), 6-20weeks old at the time of surgery, for all electrophysiological

(15 mice, 8 of which were used for identified corticostriatal recordings) and behavioral experiments. Mice were surgically implanted

with custom-made titanium head plates using dental adhesive (C&B-Metabond, Parkell) under isoflurane anesthesia (1.0-1:5% in

O2). For electrophysiological experiments, we implanted a custom microdrive containing 8-16 tetrodes made from nichrome wire

(PX000004, Sandvik) positioned inside 39 ga polyimide guide tubes. For identifying corticostriatal neurons, an optic fiber (200 mm

diameter, 0.39 NA, Thorlabs) was implanted over dorsomedial striatum or mPFC for collision testing or somatic ‘‘tagging,’’ respec-

tively. We targeted mPFC at 2.5 mm anterior to bregma and 0.5 mm lateral from the midline. We targeted ALM at 2.5 mm anterior to

bregma and 1.5 mm lateral from the midline. Surgery was conducted under aseptic conditions and analgesia (ketoprofen, 5 mg/kg
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and buprenorphine, 0.05-0.1 mg/kg) was administered postoperatively. After at least one week of recovery, mice were water-

restricted in their home cage with free access to food. Weight was monitored and maintained within 80% of their full body weight.

All surgical and experimental procedures were in accordance with the National Institutes of Health Guide for the Care and Use of

Laboratory Animals and approved by the Johns Hopkins University Animal Care and Use Committee.

Behavioral tasks
Water-restricted mice were habituated for 1-2 d while head-restrained before training on the task. Odors were delivered with a

custom-made olfactometer (Cohen et al., 2012). Each odor was dissolved in mineral oil at 1:10 dilution. Diluted odors (30 ml) were

placed on filter-paper housing (Whatman, 2.7 mm pore size). Odors were p-cymene, (� )-carvone, ( + )-limonene, eucalyptol, and

acetophenone, and differed across mice. Odorized air was further diluted with filtered air by 1:10 to produce a 1.0 L/min flow

rate. Licks were detected by charging a capacitor (MPR121QR2, Freescale) or using a custom circuit. Task events were controlled

with a microcontroller (ATmega16U2 or ATmega328). Mice were housed on a 12h dark/12h light cycle (dark from 08:00-20:00) and

each performed behavioral tasks at the same time of day, between 08:00 and 18:00. Rewards were 2-4 mL of water, delivered using

solenoids (LHDA1233115H, The Lee Co). All behavioral tasks were performed in a dark (except for sessions with pupil recordings),

sound-attenuated chamber, with white noise delivered between 2-60 kHz (Sweetwater Lynx L22 sound card, Rotel RB-930AX two-

channel power amplifier, and Pettersson L60 Ultrasound Speaker), with mice resting in a 38.1 mm acrylic tube.

Behavioral tasks: dynamic foraging
In the dynamic foraging task, we delivered one of two odors, selected pseudorandomly on each trial, for 0.5 s (Figure 1). The first odor

(presentedwith 0.95 probability) was a ‘‘go cue,’’ after whichmicemade a leftward or rightward lick toward a custom-built ‘‘lick port.’’

The second odor (presented with 0.05 probability) was a ‘‘no-go cue.’’ Licks after this cue were neither rewarded nor punished. The

lick port consisted of two polished 21 ga stainless steel tubes separated by 4 mm, individually mounted to solenoids (ROB-11015,

Sparkfun). The unchosen tube was retracted using the solenoid upon contact of the tongue to the chosen tube, and returned to its

initial position after 1.5 s. If a lick was emitted within 1.5 s of cue onset, reward was delivered probabilistically.

Rewards were baited, so that if an unchosen action would have been rewarded, the reward was delivered upon the next choice of

that alternative (Sugrue et al., 2004; Lau and Glimcher, 2005; Tsutsui et al., 2016). We did not use a ‘‘changeover delay,’’ in which

there would have been a cost of switching. Inter-trial intervals (ITIs) were drawn from an exponential distribution with a rate parameter

of 0.3, with a maximum of 30 s. This resulted in a flat ITI hazard function, ensuring that expectation about the start of the next trial did

not increase over time (Luce, 1986). The mean ITI was 7.5 s (range 2.4-30.0 s). Miss trials (go cue trials with no response) were rare

(less than 1% of all trials). Mice performed on average 399 trials per session (range 124-864 trials).

We used two task variants, a two-probability task (622 sessions) and amultiple-probability task (79 sessions). In the two-probability

task, one lick port was assigned a high reward probability and onewas assigned a low reward probability. For 98%of those sessions,

reward probabilities were chosen from the set f0:4;0:1g (236 sessions), f0:4;0:05g (326 sessions), f0:4; 0:07g, (28 sessions), or

f0:5;0:05g (17 sessions). For the remaining 2% of two-probability sessions, one high reward probability was selected from

f0:2;0:3;0:4; 0:5g and one low reward probability was selected from f0;0:03; 0:08; 0:1g. In the multiple-probability task, for 92%

of sessions, reward probabilities were chosen from the set f0:4=0:05;0:3857=0:0643;0:3375=0:1125; 0:225=0:225g (73% sessions).

These probabilities were chosen so the ratios would equal f8 : 1;6 : 1;3 : 1; 1 : 1g, to match parameters from a previous study

(Sugrue et al., 2004). The remaining 9% of those sessions used reward probabilities from f0:35=0:05;0:3=0:1;0:27=0:13;0:2=0:2g
(2 sessions) or f0:4=0:1;0:34=0:16;0:3=0:2; 0:25=0:25g (4 sessions). For both task variants, within individual sessions, block lengths

were drawn from a uniform distribution that spanned a maximum range of 40-100 trials, although the exact length spanned a smaller

range for individual sessions. Rarely, block lengths were manually truncated or lengthened if a mouse demonstrated a strong side-

specific bias.

To minimize spontaneous licking, we enforced a 1 s no-lick window prior to odor delivery. Licks within this window were pun-

ished with a new randomly-generated ITI, followed by a 2.5 s no-lick window. Implementing this window within the first week of

behavior significantly reduced spontaneous licking throughout the entirety of behavioral experiments. Across 321 sessions with

neural recordings, 281 implemented the no-lick window. Within the 40 sessions that did not, mice licked in only 2:72% of 1 s

pre-cue windows. Across all neural recording sessions with or without a no-lick window, only 0:43% of 1 s pre-cue windows con-

tained licks.

Micewere initially trained with reward probabilities chosen from the set f0;1g and reversed every 15-25 trials. The solenoid was not

energized during the task during this period of training. After 1-1.5 weeks of training, the solenoid was engaged as described above

and the animal was trained for another several days. We implemented shaping routines to lengthen blocks if animals switched inap-

propriately, and automatically deliver reward if they perseverated. These routines were discontinued before further training. Depend-

ing on the mouse, reward probabilities were then gradually changed from f0;1g to the final set over the course of another 2 weeks or

abruptly changed in 1 session.We observed no difference between either training protocol. To counteract the formation of directional

lick bias, wemounted the lick ports onto amicromanipulator (DT12XYZ, Thorlabs) and built a custom digital rotary encoder system to

reliably locate the position of the lick ports in XYZ space with 5-10 mm resolution. If mice showed a directional bias on a particular

day, the lick ports were moved 50-100 mm in the opposite direction for the following session. The lick ports were only moved before

individual sessions. Using this strategy, we did not need to use other techniques to train out a bias (for example, ‘‘bias-breaking’’
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sessions). To test for the presence of a bias, at the beginning of some sessions, we required themouse to choose one lick port for two

trials, the opposite lick port for two trials, and the original lick port for two trials before beginning the session. Only these choices were

rewarded. If no bias was observed, the session began normally. If a strong bias was observed, the lick ports were moved and the

session was restarted.

Behavioral tasks: two-alternative forced choice
We delivered one of two odors, selected pseudorandomly, for 0.5 s, after which mice made a leftward or rightward lick toward a lick

port. A leftward lick was deterministically rewarded following one odor, and a rightward lick was rewarded following the other odor.

ITIs were drawn from an exponential distribution with a rate parameter of 0.3, with a maximum of 10 s. The mean ITI was 7.9 s (range

6.0-11.0 s). A 1 s no-lick window was enforced to minimize spontaneous licking. Data were collected from 3 mice, 2 sessions each.

Behavioral tasks: dynamic classical conditioning
We delivered one of two odors, selected pseudorandomly, for 1 s, followed by a delay of 1 s. For one odor (‘‘CS + ,’’ delivered with

probability 0.95), this delay was followed by probabilistic reward delivery. The other odor (‘‘CS� ,’’ delivered with probability 0.05)

was followed by nothing. Mice were allowed a 3 swater consumption period, followed by vacuum suction to remove any unharvested

reward, followed by the ITI. ITIs were drawn from an exponential distribution with a rate parameter of 0.3, with amaximumof 30 s. The

mean time between trials was 9.4 s (range 6.0-31.4 s). For the CS+ odor, rewards were delivered with probability 0.8 or 0.2, and

reversed every 20 to 70 trials (uniform distribution) without explicit cues. Reward was delivered at the start of every session with prob-

ability 0.8. Behavior was quantified as the time of first lick within the cue or delay window (2 s after cue onset). Data were collected

from 4 mice.

Video recording
We recorded eye and face video using two CMOS cameras (Thorlabs, DCC1545M). We used a 1.0x telecentric lens (Edmund Optics,

58-430) to record the eye video and mounted the camera on a micromanipulator (DT12XYZ, Thorlabs) to reliably position it for each

mouse.We used amanual iris lens (Computar, M1614-MP2) to record the face. The eye and facewere illuminated with a custom-built

infrared LED array (Digi-Key, QED234-ND) and the experimental rig was illuminated with white LED light to place the pupil diameter in

the middle of its dynamic range. We only recorded the right eye and right side of the face. From the eye, we extracted pupil diameter

(mm), horizontal pupil angle (
�
), and vertical pupil angle (

�
). The center of the eye was defined as 0

�
in both the horizontal and vertical

planes. Nasal and upward movements were defined as positive angles. We used an eye diameter of 3.1 mm to convert to angle

(Shupe et al., 2006). From the face video, we used an open-source MATLAB GUI to extract the mean absolute motion energy

(mean difference in absolute intensity between two consecutive frames) from regions of interest (ROI) encompassing the nose, whis-

kers, and jaw, and also extracted the first 10 dimensions of the singular value decomposition (SVD) of the whole frame (Stringer et al.,

2019; https://github.com/MouseLand/FaceMap).

We used two regression models to account for behavioral and neuronal data using movements extracted from videos. In the first,

which we call ‘‘movement model 1,’’ we used the pupil diameter, horizontal gaze angle, vertical gaze angle, nose motion, whisker

motion, and jaw motion as regressors. In the second, which we call ‘‘movement model 2,’’ we used pupil diameter, horizontal

gaze angle, vertical gaze angle, and the first 10 SVD dimensions as regressors. When analyzing data across multiple sessions,

we z-scored movement variables.

To analyze left and right choice-related pupil dynamics (for comparison with muscimol inactivation), we measured pupil diameter

on behavioral sessions without manipulation. Separately for left and right choices, we measured the pupil diameter in the 500 ms

around its maximum and subtracted the baseline diameter in the 1 s preceding the trial. We report the difference between left

and right choices for this metric. We were unable to record the pupil in one muscimol-injected mouse due to the presence of a pupil

defect (coloboma) that resulted in a static pupil.

Pharmacological inactivation
We inactivated mPFC reversibly by injecting muscimol, a GABAA agonist. Muscimol hydrobromide (G019, Sigma-Aldrich) or musci-

mol powder (M1523, Sigma-Aldrich) was dissolved at 1 ng/nl in artificial cerebrospinal fluid (ACSF) and stored at 4+C. ACSF con-

tained 119 mMNaCl, 2.5 mMKCl, 2.5 mMCaCl2, 1.3 mMMgCl2, 1 mMNaH2PO4, 11 mM glucose, and 26.2 mMNaHCO3. Muscimol

was injected either prior to or during behavioral experiments. Vehicle injections consisted of ACSF only. For mPFC inactivation, we

injected 100 nL of muscimol or vehicle into each hemisphere at a depth of 1 mm (relative to the brain surface) at a rate of 1 nl/s. If

injected prior to behavior, we waited 10-20 min to allow the drug time to diffuse. In these experiments, we occasionally increased

the response window from 1.5 s after the go cue to 2.5 or 3.5 s. For V1 inactivation, we bilaterally injected the same volume of mus-

cimol at�3:5 mm posterior from bregma and 2.5 lateral, at a depth of 0.5 mm. To measure the spread of muscimol, we injected fluo-

rescent muscimol (M23400, Sigma-Aldrich) into the mPFC of 3 mice and euthanized them after waiting 10 min.

Electrophysiology
We recorded extracellularly (Digital Lynx 4SX, Neuralynx Inc., or Intan Technologies RHD2000 system with RHD2132 headstage)

from multiple neurons simultaneously at 32 kHz using custom-built screw-driven microdrives with either 16 tetrodes (64 channels
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total) or 8 tetrodes coupled to a 200 mm fiber optic (32 channels total). All tetrodes were gold-plated to an impedance of 200-300 kU

prior to implantation. Spikes were bandpass-filtered between 0.3-6 kHz and sorted online and offline using Spikesort 3D (Neuralynx

Inc.) and custom software written in MATLAB. Individual channels were bandpass-filtered and inverted. Signals were median-filter

subtracted (in the case of 64 channel recordings, this was done separately for each set of 32 channels). Spikes were thresholded at

4sn where sn = median ðjx j =0:6745Þ, where x is the bandpass-filtered signal (Quiroga et al., 2004). Waveform energy was used for

initial clustering, followed by peak waveform amplitude if necessary to further split clusters. To measure isolation quality of individual

units, we calculated the L-ratio (Schmitzer-Torbert et al., 2005) and fraction of interspike interval (ISI) violations within a 2 ms refrac-

tory period. All single units included in the dataset had an L-ratio less than 0.05 and fewer than 0:1% ISI violations. For bothmPFC and

ALM, we only included units that had a firing rate of greater than 0.1 spikes s�1 over the course of the recording session. Our clas-

sification of neurons was not critically dependent on either ISI or firing rate criteria (Figure S3G). In total, 3,073mPFC neurons from 14

mice and 537 ALM neurons from 3 mice passed these criteria (mean of 241 neurons per mouse, range 87-649, mean of 11 neurons

per session, range 1-59). For mPFC recordings, we typically recorded at microdrive-driven depths of 500 mm to 1,500 mm, relative to

the brain surface. For ALM recordings, we recorded from the brain surface to microdrive-driven depths of 1,200 mm. We verified

recording sites histologically with electrolytic lesions (15 s of 10 mA direct current across two wires of the same tetrode). We also

functionally verified placement of ALM electrodes (at the end of data collection) by electrically microstimulating and observing jaw

opening and contralateral tongue protrusions (Komiyama et al., 2010). We delivered pulses with 200 ms pulse width (cathode first,

charge balanced) at 300 Hz and 70 mA. We recorded from right mPFC in 8 mice, bilateral mPFC in 4 mice, right ALM in 1 mouse,

and simultaneously recorded from right mPFC and right ALM in 2 mice.

Viral injections
To express Chronos in mPFC neurons projecting to dorsomedial striatum, we unilaterally pressure-injected 250 nL of AAVrg-Syn-

Chronos-GFP (931012 GC/ml) into the dorsomedial striatum of C57BL/6Jmice at a rate of 1 nl/s (MMO-220A, Narishige). We injected

at the following coordinates: 0.7 mm anterior of bregma, 1.2 mm lateral from the midline, and 2.8 mm (50 nl), 2.4 mm (100 nl), and

2.0 mm (100 nl) ventral to the brain surface. The injection pipette was left in place for 5 min between each injection. Five minutes after

the last injection, the pipette was retracted 0.5mmand left in place for 10min before retracting fully. This significantly reduced release

of the virus into primary/secondarymotor cortex above dorsomedial striatum. AAVrg-Syn-Chronos-GFPwas a gift from Edward Boy-

den (Addgene viral prep 59170-AAVrg; Klapoetke et al., 2014). The craniotomywas covered with silicone elastomer (Kwik-Cast, WPI)

and dental cement. We quantified fluorescence of Chronos-GFP inmPFC in 4mice. mPFC neurons were recorded in the hemisphere

ipsilateral to the injection. For collision-testing, we implanted an optic fiber 2.0 mm ventral to the brain surface, above dorsomedial

striatum.

To quantify the distribution of corticostriatal cell bodies, we injected AAVrg-pmSyn1-EBFP-Cre (531012 GC/ml) into the dorsome-

dial striatum of 4male B6.Cg-Gt(ROSA)26Sor tm9(CAG�tdTamato)Hze/J (also known as Ai9; Madisen et al., 2010) mice (The Jackson Lab-

oratory, 007909). AAVrg-pmSyn1-EBFP-Cre (Madisen et al., 2015) was a gift from Hongkui Zeng (Addgene viral prep 51507-AAVrg).

This resulted in a similar distribution of neurons as wild-type mice expressing virus chronically (Figures 7A, 7B, S7C, and S7D).

Inactivation of corticostriatal neurons
To express hM4D(Gi) in corticostriatal neurons, we unilaterally pressure injected 250 nL of AAVrg-pmSyn1-EBFP-Cre (53 1012 GC/

ml) into the dorsomedial striatum of 6male C57BL/6Jmice. In 3mice, we injected pAAV-hSyn-DIO-hM4D(Gi)-mCherry into themPFC

(800 nL in each hemisphere across four injection sites). pAAV-hSyn-DIO-hM4D(Gi)-mCherry was a gift from Bryan Roth (Addgene

viral prep 44362-AAV5). In 3 mice, we injected rAAV5-Ef1a-DIO-hChR2(H134R)-EFYP as a control. After training mice, we injected

either 1.0 mg/kg clozapine-n-oxide dissolved in 0:5% DMSO/saline (NIMH Chemical Synthesis and Drug Supply Program) or an

equivalent volume of vehicle (0.5% DMSO/saline alone) I.P. on alternating days in a pseudorandomized fashion (62 sessions).

Identification of corticostriatal neurons
We used two techniques to optogenetically identify mPFC neurons projecting to the dorsomedial striatum: collision tests (Bishop

et al., 1962; Fuller and Schlag, 1976; Li et al., 2015) and somatic tagging (Lima et al., 2009; Cohen et al., 2012). For collision tests

(4 mice), at the end of daily recording sessions, we used Chronos excitation to observe stimulus-locked spikes by delivering 600 light

pulses through an optic fiber implanted above the striatum using a diode-pumped solid-state laser (Laserglow), together with a

shutter (Uniblitz). Stimulus parameters were 4 Hz, 2 ms pulses at 473 nm, and 60-80 mW. Identified neurons were reliably antidrom-

ically activated and did not show stimulus-locked spikes following spontaneous spikes (‘‘collisions’’). For somatic tagging (4mice), at

the end of daily recording sessions, we delivered 10 trains of light (10 pulses per train, 10 s between trains) at 10 Hz, 25 Hz, and 50 Hz,

resulting in 300 total pulses. To limit the false positive rate of identification, we only included units that responded to light with a la-

tency less than 3 ms (in response to 10 Hz pulses) and spiked in response to at least 80% of pulses at all frequencies. In total, we

identified 20 corticostriatal neurons using collision tests and 15 corticostriatal neurons using somatic tagging. We combined all neu-

rons into one identified dataset because there were no differences in either population (Figure S7L).
Neuron 103, 922–933.e1–e7, September 4, 2019 e4



QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed with MATLAB (Mathworks) and R (http://www.r-project.org/). All data are presented as mean ± SEM

unless reported otherwise. All statistical tests were two-sided. For nonparametric tests, theWilcoxon rank-sum test was used, unless

data were paired, in which case theWilcoxon signed-rank was used. For bootstrapped confidence intervals, we used 1,000 samples.

DATA ANALYSIS: DESCRIPTIVE MODELS OF BEHAVIOR

To predict choice (crðtÞ= 1 for a rightward choice and 0 for a leftward choice, and clðtÞ = 1� crðtÞ) as a function of reward and choice

history, we calculated logistic regressions according to

log

�
PðcrðtÞÞ

1� PðcrðtÞÞ
�

=
X15
i =1

bR
i ðRrðt � iÞ � Rlðt � iÞÞ+

X15
i = 1

bc
i ðcrðt � iÞ � clðt � iÞÞ+ b0;

and included mouse and session indicator variables, and a trial number variable. To predict z-scored response times, we fit the

following linear regressions:

RTðtÞ=
X15
i = 1

bR
i ðRrðt � iÞ+Rlðt � iÞÞ+

X15
i = 1

bRT
i RTðt � iÞ+ b0;

and included mouse and session indicator variables, and a trial number variable. Here, RðtÞ= 1 if reward was delivered to that side

on trial t and 0 otherwise. cðtÞ= 1 if that action was emitted and 0 otherwise. Exponentials of the form ae�bR1:15=t were fit for the choice

and response time models. We report fits using data from all mice combined (Figures 1E and 1F) and each mouse separately

(Figure S1E).

To quantify choice bias in the dynamic foraging and two-alternative forced choice tasks, we defined Bias = 2, jNr=ðNr + NlÞ�
0:5 j , where Nl and Nr are the total number of leftward and rightward choices, respectively. Bias= 1 corresponds to exclusively

left or right choices and Bias= 0 corresponds to an equal number of left and right choices.

DATA ANALYSIS: GENERATIVE MODEL OF BEHAVIOR

We developed a generative model of trial-to-trial behavior in the foraging task using Q-learning, a reinforcement-learning model that

estimates the values of alternative actions, compares them, and generates choices (a random variable, cðtÞ, leftward versus right-

ward, cðtÞ˛fl;rg). In the model, each trial generated an action value for left ðQlÞ and right ðQrÞ licks according to the following differ-

ence equations:

Qlðt + 1Þ= zQlðtÞ+ad;
Qrðt + 1Þ= zQrðtÞ;
if cðtÞ= l; where d=RðtÞ �QlðtÞ; and
Qlðt + 1Þ= zQlðtÞ;
Qrðt + 1Þ= zQrðtÞ+ad;

if cðtÞ = r, where d = RðtÞ� QrðtÞ. Learning and forgetting were implemented using the a and z parameters, respectively.

The Q-values were then fed into a softmax function (also known as a Boltzmann distribution; Daw et al., 2006) that generated

choices, according to

PðcðtÞ= rÞ= 1

1+ e�bðQrðtÞ �QlðtÞÞ+b+ kaðt � 1Þ;

PðcðtÞ= lÞ= 1� PðcðtÞ= rÞ;
where b is the so-called ‘‘inverse temperature’’ parameter that determines the balance of exploration versus exploitation given the

relative action values, b is a bias term, and k is a parameter to implement autocorrelation of the previous choice (aðt � 1Þ =� 1 for a

leftward choice and 1 for a rightward choice). We used gradient descent to obtain maximum likelihood estimates of parameters. We

used 10 randomly selected starting values for each parameter to avoid finding local minima.

To determine whether addition of each parameter improved the model without needlessly increasing model complexity, we

compared the above model to ones in which we removed z, b, and k. We then found the maximum likelihood estimates for each ses-

sion and calculated the Bayesian information criteria. The above Q-learning model was the best model for the greatest number of

mice (Figure S1F). The ‘‘base’’ model was one that excluded the b and k terms.

In our formulation, forgetting decays action values to 0. To test whether action values decayed to a different baseline, we consid-

ered a model in which action values decayed to an arbitrary baseline. This model resulted in larger Bayesian information criteria than

Q-learning. We also considered a number of other models, including the direct actor model (Dayan and Abbott, 2001), the stacked-

probability model (Huh et al., 2009), and a ‘‘switch’’ model to test if animals switchedwhen the reward rate dropped below a reference
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value. Each of these models included 8 variants, to fairly compare with theQ-learning model we selected. TheQ-learning model out-

performed these competing models. We argue against direct actor for a second reason. We found that response times were modu-

lated by chosen value, in addition to total value (data not shown). This was independent of confounding variables such as jQr �Ql j
(which is related to decision confidence; Rolls et al., 2010), exploration, and switch trials. Since direct actor computes a relative-

value-like decision variable directly, it is difficult to see how response times could bemodulated by chosen value, whichwould require

action-value-like representations.

DATA ANALYSIS: RELATIVE-VALUE AND TOTAL-VALUE PERSISTENT NEURONS

We selected for relative-value and total-value persistently-firing neurons by calculating Poisson generalized linear models which

predicted spike counts in the 1 s pre-cue period as a function of relative value ðQr � QlÞ, total value ðQr + QlÞ, and choice on the

next trial ðcðt + 1ÞÞ. We also considered a number of other models in which we used lagged choice regressors, autoregressive

terms, and interactions between reward and choice, for both Poisson regressions of spike counts and linear regressions of

z-scored firing rates. These other models did not qualitatively alter our findings. We used a P-value criterion of 0.05 to select

for neurons. Neurons for which generalized linear models did not converge were discarded. This procedure removed 9mPFC neu-

rons and 0 ALM neurons. ‘‘Pure’’ relative-value neurons were those significant for relative value and non-significant for total value

and future choice. ‘‘Pure’’ total-value neurons were defined similarly. Our selection of relative-value and total-value neurons was

not sensitive to the P-value criterion, nor was it sensitive to the pre-cue window (Figure S4). The first 10 trials of each session were

excluded from analysis to exclude effects of session initiation. These pure populations were used to calculate tuning curves in

Figures 3 and 4. To generate tuning curves for corticostriatal neurons (Figures 7 and S7), due to smaller sample size, we regressed

out total-value and future-choice signals to estimate relative-value tuning. Likewise, we regressed out relative-value and future-

choice signals to estimate total-value tuning. To quantify persistence of relative- and total-value neurons (Figure 5), we included all

neurons with significant regressors for each decision variable. Analyzing only pure relative- and total-value neurons yielded equiv-

alent results (Figures S5E and S5F). To estimate firing rates, we convolved spikes with a causal half-Gaussian filter (SD, 250 ms).

To analyze neurons independent of tuning, we transformed relative-value neurons with decreasing firing rates asQr�Ql increased

by multiplying their z-score firing rates by � 1, and combined them with the neurons with increasing firing rates as Qr� Ql

increased. Likewise, we multiplied z-score firing rates of total-value neurons with decreasing firing rates as Qr +Ql increased

by �1 and combined them with the other total-value neurons.

Notably, we did not obtain similarly quantitative evidence for the presence of action-value (Ql, Qr ) coding neurons. Using estab-

lished criteria (Seo and Lee, 2007; Ito and Doya, 2009; Kim et al., 2009; Cai et al., 2011) for defining relative-value, total-value, and

action-value neurons, we found that relative- and total-value neurons were modulated by actions and outcomes in a manner consis-

tent with model predictions. Action-value neurons, however, were both qualitatively and quantitatively inconsistent with model pre-

dictions, across a wide range of parameters. We also used another approach which has been advocated tominimize bias in selecting

for action-value neurons (Wang et al., 2013). Again, relative- and total-value neurons were predictably modulated by actions and

outcomes, but putative action-value neurons were not.

To determine whether neurons representing relative and total value may have arisen due to temporal correlations in neuronal data,

we adapted a recently-proposed statistical method (Elber-Dorozko and Loewenstein, 2018). Briefly, this method identifies neurons

that are more correlated with decision variables estimated from that session than from other sessions. For each neuron, we gener-

ated a z-value distribution by regressing spike counts onto estimated relative and total values for all sessions 300 trials or longer (ses-

sions shorter than 300 trials were excluded; sessions longer than 300 trials were truncated). A regressor was considered significant if

its z-value fell outside of the 5% significance boundary of this distribution. Using this method, we identified 221 of 2318 neurons sig-

nificant for relative value (exact binomial test, 9.5%, p < 0.0001, where the percentage expected by chance is 5%) and 557 out of

2,318 significant for total value (exact binomial test, 24.0%, p < 0.0001). This is an exceedingly strict test and should be interpreted

as a lower bound on the estimate of neurons correlated with decision variables, rather than a true estimate.

ANALYSIS OF SINGLE-NEURON STABILITY

To rigorously test whether individual neurons persistently encoded relative and/or total value across long periods of time, we used a

train/test encoding analysis. For individual neurons, we took spike counts in non-overlapping 1 s bins, starting at the cue (t = 0 s) and

extending to 15 s after the cue, and fit Poisson generalized linear models to predict spike count as a function of relative value or total

value.We then fixed this regression fit and calculated the root-mean-square error (RMSE) between predicted and actual spike counts

at all other time points. We then repeated this procedure for all relative-value (1,548) and total-value (1,880) neurons. With this anal-

ysis, if individual neurons tile across time, encoding of relative and total value should only be significant near the diagonal (i.e., training

time points) but decay rapidly off the diagonal. If, however, individual neuron firing rates are stable, then encoding should be signif-

icant for long periods of time. This appears as significant encoding off the diagonal. To obtain a noise distribution, we shuffled spike

counts 10 times. RMSE values greater than the 99:9th percentile and bins with fewer than 20 observations were discarded. Using the

sign-rank test, a time bin was significant if the P-value was less than 0:05=152 (Bonferroni corrected).
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POPULATION ANALYSIS

For each neuron, we performed amedian split of relative value and generated two smoothed 15 s-long peri-stimulus time histograms

(PSTHs, convolved with a causal half-Gaussian filter of SD 250 ms). We repeated this for all 3,073 neurons. We then performed a

principal component analysis using only the 1 s pre-cue activity and projected the original PSTHs onto the first two principal com-

ponents (accounting for 81% of the variance). We repeated this separately for total value (with the first two principal components

accounting for 82% of the variance.)

HISTOLOGY

After recording, which lasted on average 42 d (range 16-61 d), mice were euthanized with an overdose of ketamine (100 mg/kg),

exsanguinated with saline, perfused with 4% paraformaldehyde, and brains were cut in 100 mm-thick coronal sections. To

localize the laminar distribution of corticostriatal neurons labeled with AAVretro injections into dorsomedial striatum in Ai9 mice,

we acquired confocal images of mPFC (Zeiss LSM 800, ZEN acquisition software) at 10x and calculated distances from somata

to the pial surface of the medial wall of cortex using Imaris software. We acquired epifluorescence images of mPFC (Zeiss

Axio Zoom.V16) to quantify spread of fluorescent muscimol and to quantify the laminar distribution of corticostriatal cells labeled

by AAVretro-Chronos-GFP injections into dorsomedial striatum. We included sections from 2.3-2.7 mm anterior to bregma. We

used Fiji for image analysis (Schindelin et al., 2012).
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