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SUMMARY
Regulating how fast to learn is critical for flexible behavior. Learning about the consequences of actions
should be slow in stable environments, but accelerate when that environment changes. Recognizing stability
and detecting change are difficult in environments with noisy relationships between actions and outcomes.
Under these conditions, theories propose that uncertainty can be used to modulate learning rates (‘‘meta-
learning’’). We show that mice behaving in a dynamic foraging task exhibit choice behavior that varied as
a function of two forms of uncertainty estimated from a meta-learning model. The activity of dorsal raphe se-
rotonin neurons tracked both types of uncertainty in the foraging task as well as in a dynamic Pavlovian task.
Reversible inhibition of serotonin neurons in the foraging task reproduced changes in learning predicted by a
simulated lesion of meta-learning in the model. We thus provide a quantitative link between serotonin neuron
activity, learning, and decision making.
INTRODUCTION

Models from control theory and reinforcement learning (RL) pro-

pose that behavioral policies are learned through interactions

between the nervous system and the environment.1,2 In some

models in this framework, an animal learns from discrepancies

between expected and received outcomes of actions (reward

prediction errors [RPEs]). The rate at which learning occurs is

usually treated as a constant, but optimal learning rates vary

when the environment changes.3–6 Consequently, animals

should vary how rapidly they learn in order to behave adaptively

andmaximize reward. Normatively, learning rates should vary as

a function of uncertainty.7–9 When some amount of uncertainty is

expected (also referred to as outcome variance or risk), learning

rates should decrease.10–14 Slower learning helps maximize

reward when relationships between actions and outcomes are

probabilistic but stable. This modulation prevents animals from

abandoning an optimal choice due to short-term fluctuations in

outcomes. However, it is also important to detect changes in

the underlying statistics of an environment. Here, deviations

from expected uncertainty (‘‘unexpected uncertainty’’) should in-

crease learning rates.8,12,13,15–18 Tuning decision making in this

way is known as ‘‘meta-learning,’’ and there is evidence that hu-

mans and other animals use this strategy.9,12,13,19–23 How does

the nervous system control how rapidly to learn from recent

experience?

Several theories propose that neuromodulatory systems

enable meta-learning.5,8,24 One such system comprises a

small number of serotonin-releasing neurons (on the order of

104 in mice)25 with extensive axonal projections. This small

group of cells affects large numbers of neurons in distributed
regions26–29 that are responsible for learning and decision mak-

ing. The activity of these neurons changes on behaviorally

relevant timescales—both fast (hundreds of milliseconds) and

slow (tens of seconds).30–33 Serotonin receptor activation can

induce short-term changes in excitability34,35 as well as long-

lasting synaptic plasticity.36

Prior research demonstrates that serotonin neurons modulate

flexible behavior in changing environments.33,37–42 Serotonin

axon lesions37,38 or reversible inactivation of dorsal raphe sero-

tonin neurons33 impaired behavioral adaptation to changes in

action- or stimulus-outcomemappings. Importantly, in these ex-

periments animals were still capable of adapting their behavior,

but did somore slowly. Conversely, brief excitations of serotonin

neurons in a probabilistic choice task enhanced learning rates

after long intervals between outcomes.42 These studies show

that serotonin neurons modulate how quickly an animal adapts

to a change in correlational relationships in the environment.

Thus, serotonin neurons may guide learning using the statistics

of recent outcomes. However, a mechanistic understanding of

the relationship between serotonin neuron activity and meta-

learning has not been established.

We designed a dynamic foraging task for mice and recorded

action potentials fromdorsal raphe serotonin neurons.We devel-

opedagenerativemodel of behavior bymodifying anRLmodel to

include meta-learning. Adding meta-learning to the model

captured unique features of observed behavior that a model of

behavior with a static learning rate could not explain. We found

that the activity of approximately half of serotonin neurons corre-

lated with the ‘‘expected uncertainty’’ variable from themodel on

long timescales (tens of seconds to minutes) and ‘‘unexpected

uncertainty’’ at the time of outcome. Simulated removal of
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Figure 1. Mice forage dynamically for rewards

(A) Dynamic foraging task in which mice chose freely between a leftward and

rightward lick, followed by a reward with a probability that varied over time.

(B) Example mouse behavior from a single session in the task. Black (re-

warded) and gray (unrewarded) ticks correspond to left (below) and right

(above) choices. Black curve: mouse choices (smoothed over 5 trials, boxcar

filter). Blue curve: Rewards (smoothed over 5 trials, boxcar filter). Blue dots

indicate left/right reward probabilities, and dashed lines indicate a change in

reward probability (PðRÞ) for at least one spout.

(C) Logistic regression coefficients for choice as a function of outcome history.

Error bars: 95% CI. See also Figure S1.
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meta-learning from the model predicted specific changes in

learning that were reproduced by chemogenetic inhibition of dor-

sal raphe serotonin neurons. Thus,wedemonstrate aquantitative

link between serotonin neuron activity and uncertainty about de-

cision outcomes used to modulate learning rates.

RESULTS

Mice display meta-learning during dynamic decision
making
We trained thirsty, head-restrainedmice (20 female, 28 male) on a

dynamic foraging task in which they made choices between two

alternative sources ofwater.43Sessionsconsistedof about 300 tri-

als (FiguresS1A–S1C;278± 103)with forced inter-trial intervals (1–

31 s, exponentially distributed). Each trial beganwith an odor ‘‘go’’

cue that informed the animal that it couldmakeachoice, but other-

wise gave no information (Figures 1A and 1B). During a response

window (1.5 s), the mouse could make a decision by licking either

the left or the right spout. As a consequence of its choice, water

was delivered probabilistically from the chosen spout. The reward

probabilities (PðRÞ˛f0:1;0:5; 0:9g or PðRÞ˛f0:1; 0:4; 0:7g) as-

signed to each spout changed independently and randomly (not

signaled to the animal), in blocks of 20–35 trials.

Mice mostly chose the higher- or equal-probability spout (Fig-

ure S1D; correct rate, 0:66± 0:038) and harvested rewards

(reward rate, 0:55± 0:027 rewards trial�1) over many sessions
2 Current Biology 32, 1–14, February 7, 2022
(16:1± 10:7 sessions mouse�1). Mouse performance was better

than a random agent, but worse than an optimized one (Fig-

ure S1D). We first fit statistical models to quantify the effect of

outcome history on choice. These logistic regressions revealed

that mice used experience of recent outcomes to drive behavior

(Figure 1C; time constants, 1:35±0:24 trials for rewards,

1:03±0:14 trials for no rewards, 95% confidence interval [CI]).

Similarly, we quantified the effect of outcomes on the latency

to make a choice following the go cue. Consistent with previous

findings,43 this model demonstrated a large effect of recent re-

wards on speeding up response times (Figure S1E; time con-

stant, 1:88±0:18 trials, 95% CI).

These statistical findings indicate thatmice continually learned

from recent experience. To understand the nature of this

learning, we constructed a generative model from a family of

RL models called Q-learning.1,2 This class of models creates a

behavioral policy by maintaining an estimate of the value of

each action (the expected reward from making that action). Us-

ing these values to make choices, the model then learns from

those choices by using the RPE to update the action values,

thereby forming a new policy (Figure 2A). How much to learn

from RPEs is determined by the learning rate parameters. While

these parameters are typically fit as constants across behavior,

they need not be; they could vary according to statistics of the

environment (meta-learning).9,12,13,19,21–23

We first fit a model to mouse behavior in which learning rates

were constant. The model included separate parameters for

learning from positive and negative RPEs because learning

from rewards and no rewards was demonstrably asymmetric

(Figure 1C), consistent with previous reports.44–46 This model

fit overall behavior well,43,47 but was unable to capture a specific

feature of behavior around transitions in reward probabilities

(Figures 2D and 2F). In rare instances, both reward probabilities

were reassigned within 5 trials of each other. When the probabil-

ity assignments flipped from high and low to low and high (for

example, from 0.9 on the left and 0.1 on the right to 0.1 on the

left and 0.9 on the right), mice rapidly shifted their choices to

the new higher-probability alternative. However, when reward

probabilities transitioned from medium and low to low and high

(for example, from 0.5 on the left and 0.1 on the right to 0.1 on

the left and 0.9 on the right), mice took longer to adapt to the

change (Figures 2D and 2E; effect of trial from transition F1;28 =

176, p < 10�12 and trial from transition3 transition type interac-

tion F1;28 = 5:23, p = 0:030, linearmixed-effectsmodel). This dif-

ference in choice adaptation was even more apparent when

choice histories prior to the transition were identical and

behavior was sorted by experienced reward history (Figures 2F

and 2G; effect of trial from transition F1;28 = 307, p < 10�15

and trial from transition 3 transition type interaction F1;28 =

4:69, p = 0:039, linear mixed-effects model), demonstrating

that the difference in outcome history—and not simply choice

history—is responsible for this effect on choice adaptation.

Animal choice switches are often more abrupt than they

appear on average (Figures 1B and S1B). We fit a simple step-

function model to individual transitions in order to estimate tran-

sition points and the choice probabilities before and after that

point. Aligned to the estimated transition point, choice probabil-

ities before and after differed depending on the assigned reward

probability condition (Figure S2B).
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Figure 2. Mice learn at variable rates as a function of outcome history

(A) Schematic of themeta-learningmodel algorithm.Relative value (Qr �Ql ) is used tomake choices through a softmax decision function. The predicted value of a

choice (Qc) is comparedwith reward (R) to generate a reward prediction error (d). Expected uncertainty (ε) is a recent, weighted history of jdj. ε is compared with jdj
on a given trial to generate unexpected uncertainty (y). On no-reward trials, y is then integrated to determine how rapidly to learn from d, thereby updating Qc.

(B) Estimated choice probability of actual behavior (black, same as Figure 1B) and choice probability estimated with the meta-learning model (green) smoothed

over 5 trials (boxcar filter).

(C) Spout licks following no reward as a function of jdj from the static learning model (left, regression coefficient = 0.45, p < 10�20) or y from the meta-learning

model (right, regression coefficient = 0.56, p < 10�20).

(D) Left: Actual mouse behavior at transitions in which reward probabilities changed simultaneously (n= 384 high-low to low-high transitions, n= 347medium-low

to low-high transitions). Lines aremean choice probability relative to the spout that initially had the higher probability. Shading is Bernoulli SEM.Middle: Simulated

behavior at transitions using static learning model parameters fit to actual behavior. Right: Simulated behavior at transitions using meta-learning model pa-

rameters fit to actual behavior.

(E) Time constants from exponential curves fit to simulated choice probabilities (like those shown in B) for each mouse (n = 48, green circles) compared with the

actual mouse behavior (black circle). Left: Static-learning model (probability that mouse data come from simulated data distribution, p < 10�4). Right: Meta-

learning model (p = 0:51).

(F) Left: Actual mouse behavior using transitions from (D) in which the animal exclusively chose the previously high or previouslymedium spout for 10 trials prior to

the transition. Transitions were sorted into low (n = 98) and high (n = 288) reward history experienced during those 10 trials. Middle: Simulated behavior from the

static learning model. Right: Simulated behavior from the meta-learning model.

(G) Time constants from exponential fits to actual (black circles) and simulated (green circles) behavior for the static (p < 10�13) and meta-learning (p = 0:38)

models. See also Figures S2 and S3.
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Based on outcome history, the transition from high-to-low

reward probability is more obvious than the transition from me-

dium to low. This observation is consistent with learning rates

varying as a function of how much outcomes deviate from a

learned amount of variability (expected uncertainty). Thus, we

designed a model (Figure 2A) that learns an estimate of

the expected uncertainty of the behavioral policy by calculating

a moving, weighted average of unsigned RPEs.9 Increases in ex-

pected uncertainty cause slower learning. This computation

helpsmaximize reward when outcomes are probabilistic but sta-

ble.7,11,14 The model then calculates the difference between ex-

pected uncertainty and unsigned RPEs (unexpected uncertainty)

and integrates these differences over trials to determine how

quickly the brain learns from those outcomes.15,16,18,48 Intui-

tively, large RPEs that differ from recent history carry more infor-

mation because they may signal a change in the environment

and should therefore enhance learning.

When we modeled mouse behavior with meta-learning in this

way, themodel explained behavior better than the static learning

model (Figures 2B and S2D). Simulations using fitted parameters

also reproduced the transition behavior (Figures 2D–2G). It was

only necessary to modulate learning from negative RPEs to cap-

ture the behavior of mice around these transitions, perhaps due

to the asymmetric effect of rewards and no rewards on behavior

(Figure 1C). Interestingly, not all forms of meta-learning were

capable of mimicking mouse behavior. We were unable to repro-

duce the observed behavior using a model previously proposed

to modulate learning rates and explain serotonin neuron function

(Figure S3).24,49 A Pearce-Hall model,50 which modulates

learning as a function of RPE magnitude in a different way, was

also unsuccessful, as was a model without expected value esti-

mates (Figure S3).

To capture this transition behavior, our meta-learning model

leveraged a higher learning rate following high-low to low-high

transitions than following medium-low to low-high transitions.

Prior to the transitions, expected uncertainty was lower when

the animal was sampling the high-probability spout as opposed

to the medium-probability spout (Figure S2C; t626 = 17:5, p <

10�55, two-sample t test). When the reward probabilities

changed, the deviation from expected uncertainty was greater

when high changed to low ðt626 = �13:0; p < 10�33, two-sample

t test), resulting in faster learning rates ðt626 = � 13:7; p < 10�36,

two-sample t test). We also looked at the dynamics of the latent

variables within blocks to see whether they evolved on time-

scales relevant to behavior and task structure. While block

lengths were prescribed to be 20–35 trials long, the block length

experienced by the animal was often shorter (8.65 ± 2.83) due

to the probabilities changing independently at each spout and

the animals switching choices (which begins a new experienced

block). We found that when entering a new block (from the ani-

mals’ perspective), expected uncertainty became lower in the

high block relative to the medium block within approximately 5

trials (4:80±1:34). The number of trials the model took to distin-

guish between reward probabilities in this way was less than the

average experienced block lengths (Figures S2F and S2G; t48 =

8:18, p < 10�9, paired t test). Thus, the updating rate of ex-

pected uncertainty allows for the calculation of expected uncer-

tainty and detection of probability changes on timescales rele-

vant to the task and behavior.
4 Current Biology 32, 1–14, February 7, 2022
We also found evidence of meta-learning in the intra-trial lick

behavior. Following no reward, mice consistently licked the cho-

sen spout several times. We found that the number of licks was

better explained by unexpected uncertainty from the meta-

learning model than by RPE magnitude from the static learning

model (Figure 2C). In other words, mice licked more when the

no-reward outcome was most unexpected.

Serotonin neuron firing rates correlate with expected
uncertainty
Toquantify the link between serotonin neurons andmeta-learning,

werecordedactionpotentials fromdorsal rapheserotoninneurons

in mice performing the foraging task (66 neurons from 4 mice). To

identify serotonin neurons, we expressed the light-gated

ion channel channelrhodopsin-2 under the control of the serotonin

transporter promoter inSlc6a4-Cre (also known asSert-Cre) mice

(Figures 3A and S4A).Wedelivered light stimuli to the dorsal raphe

to ‘‘tag’’ serotonin neurons at the end of each recording (Figures

3B,S4B, andS4C).Most serotonin neuronsdemonstratedbrief in-

creases in firing rates during the go cue relative to the inter-trial in-

terval preceding it (Figures 3C, 3D, and 3F). Thiswas also the case

across the population (t65 = 6:61, p < 10�8; Figure 3D). The activ-

ity of most serotonin neurons distinguished rewards from no re-

wards during the outcome period and many neurons maintained

this representation during the inter-trial interval (Figures 3E and

3G). Across the population, there was no significant tendency for

neurons to increase or decrease responses to rewards relative to

lack of rewards (t65 = � 1:48, p = 0:14; Figure 3E).

Outcomes are essential to the computation of cognitive vari-

ables. First focusing on the apparent long-term dynamics, we

calculated firing rates during the inter-trial intervals and

compared the activity to the behavioral model variables (Fig-

ure 3H). We found a significant relationship between firing rate

and expected uncertainty in 50% (33 of 66) of serotonin neurons

(Figures 4A–4D; regression of inter-trial interval firing rates on ex-

pected uncertainty). We observed both positive (12 of 33) and

negative correlations (21 of 33), the latter of which could be

described as a relationship with certainty, predictability, or reli-

ability. Whenwe regressed out slow,monotonic changes in firing

rates and expected uncertainty over the course of the session,

this relationship held (Figure S4D). By contrast, we did not find

such prevalent relationships in a multivariate regression of firing

rates on other latent model variables, such as relative value or

RPE (Figures 3H and S4E).

Remarkably, firing rates were stable within inter-trial intervals.

Dividing expected uncertainty into terciles, we found that seroto-

nin neuron firing rates were relatively constant as time elapsed

within inter-trial intervals (Figure 4F; regression coefficient =

9:3310�7 from a linear model of tercile difference on time in in-

ter-trial interval). Because expected uncertainty evolved some-

what slowly as a function of RPE magnitude and the activity of

neurons on this timescale (tens of seconds) fluctuated slowly

as well, the two may be similarly autocorrelated.51 To control

for spurious correlations due to comparison of two autocorre-

lated variables, we first compared the actual neural data with

simulated expected uncertainty terms (Figure S4F). We found

stronger statistical relationships across the population with the

actual expected uncertainty than with simulated values. Addi-

tionally, we simulated neural activity with quantitatively matched
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Figure 3. Serotonin neuron firing rates respond to observable variables

(A) Schematic of electrophysiological recording of identified serotonin neurons.

(B) Example ‘‘tagging’’ of a serotonin neuron, using channelrhodopsin-2 stimulation.

(C) Left: Choice and outcome probabilities for an example session, as in Figure 1B. Right: Action potential raster plots for an example neuron from that session

aligned to the go cue (conditioned stimulus [CS]). Each row is a single trial aligned to the go cue.

(D) Mean firing rates during go cue and inter-trial interval for individual neurons (48 of 66 with significant increases and 14 of 66 with significant decreases, paired t

tests).

(E) Mean firing rates during the outcome period (1 s after second lick) for individual neurons (13 of 66 with significantly higher responses to rewards and 30 of 66

with significantly higher responses to no rewards, two-sample t tests).

(F) Heatmap of Z-scored firing rates for all serotonin neurons, aligned to go cue, for each of the choice-outcome contingencies.

(G) Rate of significant coefficients from linear regressions of firing rates (500ms bins) on observable variables at each time point (100ms steps) before, during, and

after the trial.

(H) The Z-scored inter-trial interval firing rates from the example neuron in (C) plotted as functions of model variables. There was a significant negative correlation

with ε (blue asterisk), but not with other variables.
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autocorrelation functions to the real neurons and compared this

activity with the actual expected uncertainty values. Again, we

found stronger statistical relationships in the real data as

opposed to the simulated data (Figures S4G–S4I).

To further examine the robustness of this relationship,we fit the

meta-learning model to the inter-trial interval firing rates of neu-

rons that had a significant correlation with expected uncertainty.

The meta-learning algorithm was essentially the same as before,

but we fit firing rates as a function of expected uncertainty as

opposed to fitting choices as a function of relative action values.

We found that the updating rate for expected uncertainty from the

firing rate model covaried with the same parameter from the

choice model across sessions (Figures 4G and 4H; R2 = 0:228,

p = 0:003, linear regression). Additionally, how well the model

fit to the firing rates was predicted by how well correlated the

firing rates were to the expected uncertainty variable from the

behavioral model (Figure S4J). This result suggests that the neu-

ral and behavior data, independently, predict similar expected

uncertainty dynamics.

Serotonin neuron firing rates correlate with unexpected
uncertainty at outcomes
How does the presence or absence of reward update the slowly

varying firing rates of serotonin neurons? According to the

model, expected uncertainty changes as a function of
unexpected uncertainty. In particular, the model thus predicts

a firing rate change at the time of outcome that could be used

to update expected uncertainty.

To test this, we calculated firing rates of serotonin neurons

within trials, while mice made choices and received outcomes.

We found that firing rate changes on fast timescales (hundreds

of milliseconds) correlated with expected uncertainty (εðtÞ)
throughout the period when mice received go cues and made

choices (26 of 66; Figure 4E). These correlations persisted dur-

ing the outcome (reward or no reward), as εðtÞ updated to its

next value (εðt + 1Þ). By contrast, firing rates correlated with un-

expected uncertainty (yðtÞ) primarily during the outcome (17 of

66; Figures 5A–5D). These correlations were mostly positive

(15 of 17). Thus, brief firing rate changes in serotonin neurons

could be integrated to produce more slowly varying changes.

In this computation, firing rates may be interpreted as encoding

two forms of uncertainty, one slowly varying (ε), one more tran-

sient (y). While some individual neurons had significant correla-

tions for both forms of uncertainty (2 neurons, CS-ε and

outcome-y; 3 neurons, inter-trial-interval-ε and outcome-y;

and 4 neurons with significant correlations with those variables

during all 3 epochs), most only correlated with one (5 of 66 neu-

rons CS-ε 11 inter-trial-interval-ε, and 8 outcome-y), suggesting

that the computation is performed across the population

(Figure 5E).
Current Biology 32, 1–14, February 7, 2022 5
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Figure 4. Serotonin neuron firing rates correlate with expected uncertainty on slow and fast timescales

(A) Action potential raster plots for an example neuron with a significant correlation with expected uncertainty during the go cue aligned to cue onset (left) and

outcome (second lick, right) and ordered by increasing ε.

(B) Activity of the example neuron in (A) averaged within terciles (increasing values of ε represented by darker hues) of ε and aligned to the go cue (CS, gray

rectangle) and outcome.

(C) The t-statistics across all neurons from a linear regression, modeling firing rates during the inter-trial interval as a function of εðtÞ. Blue bars indicate neurons

with significant regression coefficients.

(D) Population Z-scored firing rates plotted as a function of εðtÞ. Inset shows population split by positive and negative correlations. Main plot combines these

neurons by ‘‘sign-flipping’’ positively correlated firing rates (also used in E and F). Pie chart shows ratio of significant neurons (blue).

(E) Within-trial dynamics of expected uncertainty (εðtÞ, εðt + 1Þ, top row) aligned to go cue (CS, left column) and outcome (right column) across all significant

neurons. Scale bar, 0.5 Z score. Gray curve: Response time (RT) distribution (cut off at 1 s).

(F) The Z-scored firing rates of serotonin neurons split by εðtÞ tercile. Scale bar, 0.5 Z score.

(G) Example dynamics of εðtÞ estimated from behavior and neuronal firing rates.

(H) Log-log plot of the expected uncertainty update rate (c) from the firing rate model for each neuron and from the behavioral model derived from simultaneous

choice behavior. See also Figure S4.
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Serotonin neuron firing rates correlate with uncertainty
in a Pavlovian task
Based on the results from the first experiment, we made

two predictions. First, we hypothesized that correlations be-

tween serotonin neuron activity and uncertainty generalize to

other behavioral tasks. To test this prediction, we trained 9

mice on a Pavlovian version of the task in which an odor cue pre-

dicted probabilistic reward after a 1 s delay (Figure 6A). The

probability of reward changed in blocks within each session

(Figure 6B). This task required no choice to be made. Rather,

mice simply licked toward a single water-delivery spout in antic-

ipation of a possible reward.

The number of anticipatory licks during the delay between cue

and outcome (presence or absence of reward) reflected recent

reward history (Figure 6C). To estimate uncertainty in this task,

we modified the meta-learning model to generate anticipatory

licks as a function of the expected value of the cue (Figure S5A).

While the model was capable of explaining behavior and accu-

rately estimating reward probabilities (Figure S5B), interestingly,

we found no clear behavioral evidence of variable learning rates

(Figures S5C–S5E). However, recordings of dorsal raphe seroto-

nin neurons from mice behaving in this task revealed that the
6 Current Biology 32, 1–14, February 7, 2022
activity of these neurons correlated with expected uncertainty

at similar rates to those recorded in the dynamic foraging task

(Figures 6D–6G and S5F–S5H; 61%, 25 of 41 neurons from 5

mice) and were mostly negatively correlated (20 of 25). Similar

to observations in the foraging task, neurons in the Pavlovian

task showed stable firing rates within inter-trial intervals (Fig-

ure 6H; regression coefficient = �3:1310�6 from a linear model

of tercile difference on time in inter-trial interval). Serotonin

neuron firing rates also correlated with expected uncertainty

throughout its update interval (27 of 41 during cue and delay,

25 of 41 after outcome; Figures 6E and 6I) and with unexpected

uncertainty at the time of the outcome (11 of 41; Figure 6I). Thus,

the nervous systemmaymaintain running estimates of two forms

of uncertainty that generalize across behavioral tasks.

Serotonin neuron inhibition disrupts meta-learning
In our second prediction from the dynamic foraging experiment,

we asked whether inactivating serotonin neurons rendered mice

unable to adjust learning rates. The meta-learning model makes

specific predictions about the role of uncertainty in learning. To

test the predictions of the model under the hypothesis that sero-

tonin neurons encode uncertainty, we expressed an inhibitory
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Figure 5. Serotonin neuron firing rates corre-

late with unexpected uncertainty on fast

timescales

(A) Action potential raster plots for an example

neuron with a significant correlation with unex-

pected uncertainty during the outcome aligned to

cue onset (left) and outcome (second lick, right) and

ordered by increasing y.

(B) Activity of the example neuron in (A) averaged

within terciles (increasing values of y represented by

lighter hues) of y and aligned to the go cue (gray

rectangle, left, yðt � 1Þ) and outcome (dashed lined,

right, yðtÞ).
(C) Within-trial dynamics of unexpected uncertainty

(yðt � 1Þ, yðtÞ) aligned to go cue (CS, left column)

and outcome (right column) for all significant neu-

rons (pooled by ‘‘sign-flipping’’ negatively corre-

lated firing rates, also used in D). Scale bar, 0.5 Z

score. Gray curve: RT distribution (cut off at 1 s).

(D) Population Z-scored firing rates plotted as a

function of yðtÞ.
(E) The t-statistics from linear regressions of

outcome firing rates on yðtÞ and CS firing rates on

εðtÞ for all identified serotonin neurons.
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designer receptor exclusively activated by designer drugs

(DREADD) conjugated to a fluorophore (hM4Di-mCherry) in dor-

sal raphe serotonin neurons (Figures 7A and S6A). Sert-Cre mice

received injections of a Cre-dependent virus containing the

receptor (AAV5-hSyn-DIO-hM4D(Gi)-mCherry, n= 6 mice)

into the dorsal raphe. Control Sert-Cre mice were injected

with the same virus containing only the fluorophore (n= 6

mice). On consecutive days, mice received an injection of vehicle

(0.5% DMSO in 0.9% saline), the DREADD ligand agonist 21

(3 mg kg�1 in vehicle),52–54 or no injection. Because simulta-

neous changes of reward probabilities were rare, we modified

the task to include them with slightly higher frequency.

To quantify the change in behavior predicted by themodel, we

first fit themodel tomouse behavior on vehicle injection days and

used those parameters to simulate behavior. We then simulated

a lesion by fixing expected and unexpected uncertainty to

0 (essentially fixing the negative RPE learning rate to its median

value) and simulated behavior again (Figure 7B). The simulated

lesion diminished the differences in transition speed between

the pre-transition reward conditions (Figures 7C and 7E), iden-

tical to a static learning model.

On days with agonist 21 injections, mice expressing hM4Di in

serotonin neurons demonstrated changes in learning at transi-

tions (Figures 7D and 7F; effects of trial from transition F1;58 =

87:9, p < 10�12, trial 3 transition type interaction F1;58 = 13:7,

p = 0:003, transition type F1;58 = 9:15, p = 0:004, and drug con-

dition F1;58 = 21:2, p < 10�4, linear mixed effects model) match-

ing the predictions of the simulated lesionmodel (Figures 7C and

7E; effects of trial from transition F1;58 = 226, p < 10�20, trial 3

transition interaction F1;58 = 5:16, p = 0:027, and transition type

3 drug condition interaction F1;58 = 9:9, p = 0:003). Mice ex-

pressing a fluorophore alone in serotonin neurons showed

no effect of agonist 21 (Figures 7H and 7J; effects of trial from

transition F1;58 = 81:2, p < 10�11, transition type F1;58 = 17:4,

p < 10�3, and trial 3 transition type interaction F1;58 = 23:8,
p < 10�5), consistent with simulations from the meta-learning

model fit separately to vehicle and agonist 21 behavior (Figures

7G and 7I; effects of trial from transition F1;58 = 255, p < 10�22

and trial3 transition interaction F1;58 = 4:14, p = 0:046). Seroto-

nin neuron inhibition did not slow response times (Figure S6B),

change how outcomes drove response times (Figure S6C), nor

cause mice to lick during inter-trial intervals. Thus, the observed

effects of reversible inhibition are consistent with a role for sero-

tonin neurons signaling uncertainty to modulate learning rates.

DISCUSSION

To behave flexibly in dynamic environments, learning rates

should vary according to the statistics of those

environments.5,7,8,19,55 Our model captures differences in

learning by estimating expected uncertainty: a moving average

of unsigned prediction errors that tracks variability in the out-

comes of actions. This quantity is used to modulate learning

rate by determining how unexpected an outcome is relative to

that expected uncertainty. When outcomes are probabilistic

but stable, expected uncertainty also slows learning. The model

captured observed changes in learning rates that could not be

reproduced with an RL model that uses static learning rates.

The activity of the majority of identified serotonin neurons corre-

lated with the expected uncertainty variable from the model

when fit to dynamic foraging behavior. This relationship held in

a different behavioral context, with similar fractions of serotonin

neurons tracking expected uncertainty in a dynamic Pavlovian

task. During dynamic foraging, chemogenetic inhibition of sero-

tonin neurons caused changes in choice behavior that were

consistent with the changes in learning predicted by removing

meta-learning from the model.

While serotonin neuron firing rates change on multiple time-

scales,31 the observed changes that correlated with expected

uncertainty occurred over relatively long periods of time. How
Current Biology 32, 1–14, February 7, 2022 7
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Figure 6. Serotonin neuron firing rates

correlate with expected and unexpected

uncertainty in a dynamic Pavlovian task

(A) Schematic of Pavlovian task in which the

probability of reward (PðRÞ) varied over trials.

(B) Example behavior showing anticipatory licking,

in the delay before outcome, as PðRÞ varied. Black
ticks: Rewarded trials. Gray ticks: Unrewarded

trials.

(C) Linear regression coefficients of licking rate on

reward history.

(D) Two example neurons showing negative cor-

relations between inter-trial interval firing rates and

expected uncertainty (�ε is plotted) when the

monotonic trends are regressed out. Scale bars, 1

Z score, 50 trials.

(E) Example serotonin neuron showing a negative

correlation between CS firing rates and expected

uncertainty (εðtÞ). Top: Firing rates averaged within

terciles (represented by hue) of E and aligned to

the CS (left, εðtÞ) and outcome (right, εðt + 1Þ).
Bottom: Action potential raster plots aligned to

cue onset (left) and outcome (second lick, right)

and ordered by increasing E.

(F) The t-statistics from linear regression,modeling

inter-trial interval firing rate as a function of εðtÞ as
in Figure 3F.

(G) Population ‘‘tuning curves,’’ as in Figure 3G.

(H) Stable firing rates within inter-trial intervals, as

in Figure 3I. Scale bar, 0.5 Z score.

(I) Within-trial, Z-scored firing rates as a function of

uncertainty as in Figures 4E and 5C. Scale bar, 0.5

Z score. See also Figure S5.
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rapidly RPE magnitudes are integrated tracks variability in out-

comes on a timescale relevant to experienced block lengths.

Consequently, deviations from expected uncertainty reliably

indicate changes in reward probabilities. In addition to the

computational relevance of activity on this timescale, serotonin

neuron firing rate changesmay be optimized for the nervous sys-

tem to implement these computational goals. Slow changes in

serotonin neuron activity could enable gating or gain control

mechanisms,56,57 bidirectional modulation of relevant inputs

and outputs,58–60 or other previously observed circuit mecha-

nisms that modulate how new information is incorporated61 to

drive flexible behavior.

We also observed changes in serotonin neuron activity on

shorter timescales that correlated with both expected and unex-

pected uncertainty. The timing of these brief signals may be

important to update the slower dynamics correlated with ex-

pected uncertainty, as predicted from the model (i.e., ε essentially

integrates y). Alternatively, serotonin neurons could ‘‘multiplex’’

across timescales, whereby brief changes in firing rates may

have different downstream functions than slower changes.

Several conceptualizations of expected uncertainty have been

proposed with different consequences for learning and
8 Current Biology 32, 1–14, February 7, 2022
exploratory behavior.9 For example, there

can be uncertainty about a specific corre-

lational relationship between events in

the environment or between a specific

action and the environment. There is evi-
dence that the activity of norepinephrine and acetylcholine neu-

rons may be related to these types of uncertainty.8,62,63 It should

be noted that both norepinephrine neurons in the locus

coeruleus64 and acetylcholine neurons in the basal forebrain65

receive functional input from dorsal raphe serotonin neurons.

Dorsal raphe serotonin neurons also receive input from locus

coeruleus.66

Here, we studied a more general form of expected uncertainty

that tracks variability in outcomes regardless of the specific ac-

tion taken. This type of uncertainty may apply to learned rules or

separately, states in a model-based framework.67 It may also be

conceptually related to the level of commitment to a belief, which

can scale learning in models that learn by minimizing sur-

prise.15,16,18 In these ways, our model may approximate infer-

ence or change detection in certain behavioral contexts.12,13

Our notion of expected uncertainty is also related to reward vari-

ance, risk, or outcome uncertainty,10,11,67–69 but with respect to

an entire behavioral policy as opposed to a specific action. It will

be important for future studies to determine whether the present

observations generalize. For example, serotonin’s known effects

on neurons in sensory areas57,70–72 may play a role in sensory

prediction learning.
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Figure 7. Serotonin neuron inhibition disrupts meta-learning
(A) Schematic of experiment to reversibly inactivate serotonin neurons and representative expression of hM4Di-mCherry in dorsal raphe serotonin neurons.

(B) Schematic of simulated lesion in which models were fit to mouse behavior from vehicle sessions and then meta-learning variables (i.e., ε and y) were set to

zero.

(C) Simulated behavior with meta-learning intact, fit to vehicle behavior (left) and simulated lesion (right).

(D) Mouse behavior with vehicle injections (control experiment) and drug (agonist 21). Lines are mean choice probability and shading is Bernoulli SEM.

(E) Exponential time constants for transitions from simulated behavior and simulated lesions.

(F) Time constants from mice (with 95% CI).

(G) Simulated behavior from mice expressing mCherry in serotonin neurons with vehicle (left) and agonist 21 (right) injections.

(H) Mouse behavior with vehicle injections and drug (agonist 21).

(I) Simulation time constants from fluorophore-control mice.

(J) Time constants from fluorophore-control mice (with 95% CI).

See also Figure S6.
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Unexpected uncertainty has also been previously defined in

numerous ways. In our model, the negative RPE learning rate

is a function of recent deviations from expected uncertainty

and thus may be most related to a subjective estimate of envi-

ronmental volatility. This interpretation is consistent with learning

rates increasing as a function of increasing volatility.19 An esti-

mate of volatility may also reflect the surprise that results from

the violation of a belief.15,16,18 Our observation that brief changes

in serotonin neuron firing rates at the time of outcome correlated

with unexpected uncertainty is also consistent with previous

work showing that serotonin neuron activity correlatedwith ‘‘sur-

prise’’ when cue-outcome relationships were violated.33

Our model proposes one learning system with variable

learning rates, but these results may also be consistent with

models that combine contributions of different learning sys-

tems.73–75 From this perspective, the uncertainty representa-

tions we observed may be related to the uncertainty or reliability

of one of those learning systems, consistent with their general-

ization across actions. Unreliability of a slower learning system

around transitions may enhance contributions from a faster
learning system, for example. A somewhat related alternative

is that serotonin neurons provide this signal to refine more com-

plex and flexible learning systems implemented in recurrent neu-

ral networks.76

We did not find any evidence in the dynamic Pavlovian

behavior that distinguished meta-learning from static learning.

It may be that differences in these models are not observable

in this behavior. Also, the dynamic foraging task engages regions

of the brain that are not necessary for the dynamic Pavlovian

task.43 Consequently, uncertainty may be incorporated in other

ways to drive behavior. Alternatively, the brain may keep track

of statistics of the environment that are not always used in

behavior.

In the meta-learning RL model as we have formulated it, only

the negative RPE learning rate is subject to meta-learning. This

is an empirical finding and one that may be a consequence of

the structure of the task. For example, the reward statisticsmight

result in a saturation of learning from rewards such that its mod-

ulation is unnecessary. Asymmetries in the task structure (the

absence of trials in which PðRÞ= 0:1 for both spouts) and mouse
Current Biology 32, 1–14, February 7, 2022 9
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preference (mice regularly exploited the PðRÞ= 0:5 spout) also

result in rewards carrying more information about which spout

is likely ‘‘good enough’’ (PðRÞ= 0:9 or PðRÞ = 0:5). Another pos-

sibility, not mutually exclusive with the first, is that learning about

rewards and lack thereof could be asymmetric.44,77–80 This

asymmetry could result from ambiguity in the non-occurrence

of the expected outcome, differences in the magnitude of values

of each outcome, or separate learning mechanisms entirely.

Similarly, because outcomes are binary in our tasks, learning

from negative and positive RPEs could be asymmetric.

Alternatively, as described above, this parameterization might

just better approximate a more complex cognitive process

(e.g., inference) in this specific behavioral context.

Our findings and conceptual framework, including the effect

on learning fromworse-than-expected outcomes, are consistent

with previous observations and manipulations of serotonin

neuron activity. In a Pavlovian reversal task, changes in cue-

outcome mappings elicited responses from populations of sero-

tonin neurons that decayed asmice adapted their behavior to the

newmapping.33 Chemogenetic inhibition of serotonin neurons in

this task impaired behavioral adaptation to a cue that predicted

reward prior to the reversal, but not after. The manipulation did

not affect behavior changes in response to the opposite reversal.

In reversal tasks in which action-outcome contingencies were

switched, lesions or pharmacological manipulations of serotonin

neurons also resulted in impairments of adaptive behavior at the

time of reversal.37–41 Specifically, lesioned animals continued to

make the previously rewarded action. These findings are consis-

tent with a role for serotonin neuron activity in tracking expected

uncertainty and driving learning from worse-than-expected out-

comes. More recent work in mice demonstrated that serotonin

neuron activation increased the learning rate after longer inter-

vals between outcomes but that learning after shorter intervals

was already effectively saturated (i.e., win-stay, lose-shift).42

An intriguing possibility is that serotonin neurons mediate the

contributions of different learning systems, like faster, working-

memory-based learning, and slower, plasticity-dependent

learning or model-based and model-free learning.42,73–75,81–84

Previous recordings from dorsal raphe neurons generally and

identified serotonin neurons demonstrated a relationship be-

tween their activity and the expected value of cues or contexts

on different timescales.31–33,85–87 These findings suggest that

serotonin neuron activity may track state value. It is possible

that this information could be used to drive learning in a similar

way as uncertainty, but not in themanner proposed by the oppo-

nency or global reward state models that we tested. To explain

foraging behavior, there would need to be some change detec-

tion component to the state value computation in order to drive

learning adaptively. Similarly, the signal we observed may be

related to state uncertainty.67

Our results may also be consistent with those from human

studies inwhich the serotonin system ismanipulated. Tryptophan

depletion results in low blood contents of serotonin and leads to

impaired learning about the aversive consequences of actions or

stimuli,88,89 enhances perseverative decisionmaking,90,91 and al-

ters the relative contributions of model-free and model-based

contributions to decision making,82 among other effects. Selec-

tive serotonin reuptake inhibitors have also been shown to disrupt

learning in probabilistic reversal learning tasks.92,93
10 Current Biology 32, 1–14, February 7, 2022
A number of studies have also examined the role of serotonin

neuron activity in patience and persistence for rewards.86,94–96

These studies demonstrated that activating serotonin neurons

increased waiting times for or active seeking of reward. In all

cases, animals can be thought of as learning from lack of re-

wards at each point in time. Under the proposed meta-learning

framework, manipulating uncertainty could slow this learning, re-

sulting in prolonging waiting times or enhancing persistence.

Whatare thepostsynapticconsequencesof slowchanges inse-

rotonin release? Target regions involved in learning and decision

making, like theprefrontalcortex, ventral tegmental area, andstria-

tum, express a diverse range of serotonin receptors capable of

converting a global signal into local changes in circuit dynamics.

The activity in these regions also correlates with latent decision

variables that update with each experience,22,43,97,98,99 providing

a potential substrate through which serotonin could modulate

learning. For example, the gain of RPE signals produced by dopa-

mine neurons in the ventral tegmental area is modulated by the

variance of reward value.100,101

What is the presynaptic origin of uncertainty computation in

serotonin neurons? Synaptic inputs from the prefrontal cortex102

may provide information about decision variables used in this

task.43 Local circuit mechanisms in the dorsal raphe102,103 and

long-lasting conductances in serotonin neurons104–108 likely

contribute to the persistence of these representations.

Learning is dynamic. Flexible decision making requires us-

ing recent experience to adjust learning rates adaptively. The

observed foraging behavior demonstrates that learning is not

a static process, but a dynamic one. The meta-learning RL

model provides a potential mechanism by which recent

experience modulates learning adaptively, and reveals a quan-

titative link between serotonin neuron activity and flexible

behavior.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Animals and surgery
Weused67maleand femalemice,backcrossedwithC57BL/6Jandheterozygous forCre recombinaseunder thecontrol of theserotonin

transporter gene (Slc6a4tm1ðcreÞXz, The Jackson Laboratory, 0145540).109 Four malemicewere used for electrophysiological recordings

in the dynamic foraging task, 5 mice were used for electrophysiological recordings in the dynamic Pavlovian task (1 female, 4 male), 44

mice (20 female, 24male)wereused for additional behavior in thedynamic foraging task, 4malemicewereused for additional behavior in

the dynamic Pavlovian task, and 12 mice (3 female, 9 male) were used for the chemogenetic experiments. Surgery was performed on

mice between the ages of 4–8 weeks, under isoflurane anesthesia (1.0%–1.5% in O2) and in aseptic conditions. During all surgeries,

custom-made titanium headplates were surgically attached to the skull using dental adhesive (C&B-Metabond, Parkell). After the sur-

geries, analgesia (ketoprofen, 5 mg kg�1 and buprenorphine, 0.05–0.1 mg kg�1) was administered to minimize pain and aid recovery.

For electrophysiological experiments, we implanted a custom microdrive targeting dorsal raphe using a 16+ posterior angle,

entering through a craniotomy at 5.55 mm posterior to bregma and aligned to the midline.

For all experiments, mice were given at least one week to recover prior to water restriction. During water restriction, mice had free

access to food and were monitored daily in order to maintain 80% of their baseline body weight. All mice were housed in reverse light

cycle (12h dark/12h light, dark from 08:00–20:00) and all experiments were conducted during the dark cycle between 10:00 and

18:00. All surgical and experimental procedures were in accordance with the National Institutes of Health Guide for the Care and

Use of Laboratory Animals and approved by the Johns Hopkins University Animal Care and Use Committee.

METHOD DETAILS

Behavioral task
Before training on the tasks, water-restricted mice were habituated to head fixation for 1–3 d with free access to water from the pro-

vided spouts (two 21 ga stainless steel tubes separated by 4mm) placed in front of the 38.1mm acrylic tube in which themice rested.
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The spouts were mounted on a micromanipulator (DT12XYZ, Thorlabs) with a custom digital rotary encoder system to reliably deter-

mine the position of the lick spouts in XYZ space with 5–10 mm resolution.43 Each spout was attached to a solenoid (ROB-11015,

Sparkfun) to enable retraction (see Behavioral tasks: dynamic foraging). The odors used for the cues (p-cymene and (�)-carvone)

were dissolved in mineral oil at 1:10 dilution (30 ml) and absorbed in filter paper housed in syringe adapters (Whatman, 2.7 mm

pore size). The adapters were connected to a custom-made olfactometer110 that diluted odorized air with filtered air by 1:10 to pro-

duce a 1.0 L min�1 flow rate. The same flow rate was maintained outside of the cue period so that flow rate was constant throughout

the task.

Licks were detected by charging a capacitor (MPR121QR2, Freescale) or using a custom circuit (Janelia Research Campus 2019-

053). Task events were controlled and recorded using custom code (Arduino) written for a microcontroller (ATmega16U2 or AT-

mega328). Water rewards were 2–4 ml, adjusted for each mouse to maximize the number of trials completed per session and to

keep sessions around 60 minutes. Solenoids (LHDA1233115H, The Lee Co) were calibrated to release the desired volume of water

and were mounted on the outside of the dark, sound-attenuated chamber used for behavior tasks. White noise (2–60 kHz, Sweet-

water Lynx L22 sound card, Rotel RB-930AX two-channel power amplifier, and Pettersson L60 Ultrasound Speaker), was played in-

side the chamber to block any ambient noise.

Behavioral tasks: dynamic foraging
During the 1–3 days of habituation, mice were trained to lick both spouts to receive water. Water delivery was contingent upon a lick

to the correct spout at any time. Reward probabilities were chosen from the set f0; 1g and reversed every 20 trials.

In the second stage of training (5–12 d), the trial structure with odor presentation was introduced. Each trial began with the 0.5 s

delivery of either an odor ‘‘go cue’’ (P = 0:95) or an odor ‘‘no-go cue’’ (P = 0:05). Following the go cue, mice could lick either the left or

the right spout. If a lick wasmade during a 1.5 s response window, reward was delivered probabilistically from the chosen spout. The

unchosen spout was retracted at the time of the tongue contacting the other spout so that mice would not try to sample both spouts

within a trial. The unchosen spout was replaced 2.5 s after cue onset. Following a no-go cue, any lick responses were neither re-

warded nor punished. Reward probabilities during this stage were chosen from the set f0;1g and reversed every 20–35 trials. During

this period of training only, water was occasionally manually delivered to encourage learning of the responsewindow and appropriate

switching behavior. Reward probabilities were then changed to f0:1;0:9g for 1–2 days of training prior to introducing the final stage of

the task. Rewards were never ‘‘baited,’’ as in previous versions of the task.43,111–113 We did not penalize switching with a ‘‘change-

over delay.’’ If a directional lick bias was observed in one session, the lick spouts were moved horizontally 50–300 mm prior to the

following session such that the spout in the biased direction was further away.

After the 1.5 s response window, inter-trial intervals were generated as draws from an exponential distribution with a rate param-

eter of 0.3 and a maximum of 30 s. This distribution results in a flat hazard rate for inter-trial intervals such that the probability of the

next trial did not increase over the duration of the inter-trial interval.114 Inter-trial intervals (the times between consecutive go cue

onsets) were 7.45 s on average (range 2.5–32.5 s). As in previous studies, mice made a leftward or rightward choice in greater

than 99% of trials.43 Mice completed 280±66:6 trials per session (range, 79–655 trials).

In the final stage of the task, the reward probabilities assigned to each lick spout were drawn pseudorandomly from the set

f0:1;0:5; 0:9g in all the mice from the behavior experiments (n = 46), all the mice from the DREADDs experiments (n = 10), and

half of the mice from the electrophysiology experiments (n = 2). The other half of mice from the electrophysiology experiments

(n = 2) were run on a version of the task with probabilities drawn from the set f0:1; 0:4; 0:7g. The probabilities were assigned to

each spout individually with block lengths drawn from a uniform distribution of 20–35 trials. To stagger the blocks of probability

assignment for each spout, the block length for one spout in the first block of each session was drawn from a uniform distribution

of 6–21 trials. For each spout, probability assignments could not be repeated across consecutive blocks. To maintain task engage-

ment, reward probabilities of 0.1 could not be simultaneously assigned to both spouts. If one spout was assigned a reward probability

greater than or equal to the reward probability of the other spout for 3 consecutive blocks, the probability of that spout was set to 0.1

to encourage switching behavior and limit the creation of a direction bias. If a mouse perseverated on a spout with reward probability

of 0.1 for 4 consecutive trials, 4 trials were added to the length of both blocks. This procedure was implemented to keep mice from

choosing one spout until the reward probability became high again.

To minimize spontaneous licking, we enforced a 1 s no-lick window prior to odor delivery. Licks within this window were punished

with a new, randomly-generated inter-trial interval followed by a 2.5 s no-lick window. Implementing this window significantly

reduced spontaneous licking throughout the entirety of behavioral experiments.

Behavioral tasks: dynamic Pavlovian
On each trial either an odor ‘‘CS+ ’’ (P = 0:95) or an odor ‘‘CS� ’’ (P = 0:05) was delivered for 1 s followed by a delay of 1 s. CS+

predicted probabilistic reward delivery, whereas CS� predicted nothing. Mice were allowed 3 s to consume the water, after which

any remaining rewardwas removed by a vacuum. Each trial was followed by an inter-trial interval, drawn from the same distribution as

in the dynamic foraging task. The time between trials (CS on to CS on) was 9.34 s on average (range 6–36 s).

The reward probability assigned to CS+ was drawn pseudorandomly from the set f0:2;0:5;0:8g or, in separate sessions, alter-

nated between the probabilities in the set f0:2;0:8g. The probability changed every 20–70 trials (uniform distribution). The CS+ prob-

ability of the first block of every session was 0.8.
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Electrophysiology
We recorded extracellular signals from neurons at 32 or 30 kHz using a Digital Lynx 4SX (Neuralynx, Inc.) or Intan Technologies

RHD2000 system (with RHD2132 headstage), respectively. The recording systems were connected to 8–16 implanted tetrodes

(32–64 channels, nichrome wire, PX000004, Sandvik) fed through 39 ga polyimide guide tubes that could be advanced with the

turn of a screw on a custom, 3D-printed microdrive. The impedances of each wire in the tetrodes were reduced to 200–300 kU

by gold plating. The tetrodes were wrapped around a 200 mm optic fiber used for optogenetic identification. After each recording

session, the tetrode-optic-fiber bundle was driven down 75 mm. The median signal was subtracted from raw recording traces across

channels and bandpass-filtered between 0.3–6 kHz using customMATLAB software. To detect peaks, the bandpass-filtered signal,

x, was thresholded at 4 sn where sn =median( jxj
0:6745).

115 Detected peaks were sorted into individual unit clusters offline (Spikesort 3D,

Neuralynx Inc.) using waveform energy, peak waveform amplitude, minimum waveform trough, and waveform principal component

analysis. We used two metrics of isolation quality as inclusion criteria: L-ratio (< 0:05)116 and fraction of interspike interval violations

(< 0:1% interspike intervals < 2 ms).

Individual neurons were determined to be optogenetically-identified if they responded to brief pulses (10 ms) of laser stimulation

(473 nm wavelength) with short latency, small latency variability, and high probability of response across trains of stimulation (10

trains of 10 pulses delivered at 10 Hz). We used an unsupervised k-means clustering algorithm to cluster all neurons based on these

features. The elbow method and Calinkski-Harabasz criterion were used to determine that the optimal number of clusters was 4.

Members of the cluster (66 neurons) with the highestmean probability of response, shortestmean latency, and smallestmean latency

standard deviation were considered as identified. The responses of individual neurons were manually inspected to ensure light re-

sponsivity. In addition to the presence of identified serotonin neurons, targeting of dorsal raphe was confirmed by performing elec-

trolytic lesions of the tissue (20 s of 20 mA direct current across two wires of the same tetrode) and examining the tissue after

perfusion.

Viral injections
To express channelrhodopsin-2 (ChR2), hM4Di, or mCherry in dorsal raphe serotonin neurons, we pressure-injected 810 nL of

rAAV5-EF1a-DIO-hChR2(H134R)-EYFP (331013 GC ml�1), pAAV5-hSyn-DIO-hM4D(Gi)-mCherry (1:231013 GC ml�1), or pAAV5-

hSyn-DIO-mCherry (1:031013 GC ml�1) into the dorsal raphe of Sert-Cre mice at a rate of 1 nL s�1 (MMO-220A, Narishige).

pAAV-hSyn-DIO-hM4D(Gi)-mCherry and pAAV-hSyn-DIO-mCherry were gifts from Bryan Roth (Addgene viral preps 44362-AAV5

and 50459-AAV5). We made three injections of 270 nL at the following coordinates: f4:63; 4:57;4:50g mm posterior of bregma,

f0:00; 0:00; 0:00g mm lateral from the midline, and f2:80; 3:00; 3:25g mm ventral to the brain surface. The pipette was inserted

through a craniotomy at�5:55 mm posterior to bregma and aligned to midline, using a 16+ posterior angle. Before the first injection,

the pipette was left at the most ventral coordinate for 10 minutes. After each injection, the pipette was withdrawn 50 mm and left in

place for 5 min. The craniotomy after a hM4Di or mCherry injection was covered with silicone elastomer (Kwik-Cast, WPI) and dental

cement. For electrophysiology experiments with rAAV5-EF1a-DIO-hChR2(H134R)-EYFP injections, the microdrive was implanted

through the same craniotomy.

Inactivation of serotonin neurons
Six mice were injected with pAAV-hSyn-DIO-hM4D(Gi)-mCherry and 6 mice were injected with pAAV-hSyn-DIO-mCherry as a con-

trol. One of the hM4Dmice failed to perform the task and so was excluded. After trainingmice, we injected either 3.0 mg kg�1 agonist

21 (Tocris) dissolved in 0:5% DMSO/saline or an equivalent volume of vehicle (0.5% DMSO/saline alone) I.P. on alternating days (5

sessions per injection type per mouse).

Histology
After experiments were completed, mice were euthanized with an overdose of isoflurane, exsanguinated with saline, and perfused

with 4%paraformaldehyde. The brains were cut in 100-mm-thick coronal sections andmounted on glass slides.We validated expres-

sion of rAAV5-EF1a-DIO-hChR2(H134R)-EYFP, pAAV-hSyn-DIO-hM4D(Gi)-mCherry, or pAAV-hSyn-DIO-mCherry with epifluores-

cence images of dorsal raphe (Zeiss Axio Zoom.V16) with immunostaining against tryptophan hydroxylase-2 (goat a-TPH2, Abcam

121020, at 1:400) as a marker of serotonin neurons and donkey a-goat conjugated to Cy5 (Abcam 6566) as a secondary antibody. In

electrophysiological experiments, we confirmed targeting of the optic-fiber-tetrode bundle to the dorsal raphe by location of the elec-

trolytic lesion.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
All analyses were performed with MATLAB (Mathworks) and R. All data are presented as mean ± SD unless reported otherwise. All

statistical tests were two-sided. In Figures 2E and 2G, the probability that the time constants from the actual behavior belonged to the

distribution of simulated behavior time constants was calculated by finding the Mahalanobis distance of the former from the latter,

calculating the cumulative density function of the chi-square distribution at that distance, and subtracting it from 1. For all analyses,

no-go (dynamic foraging) and CS� (dynamic Pavlovian) cues were ignored and treated as part of the inter-trial interval.
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Data analysis: descriptive models of behavior
We fit logistic regression models to predict choice as a function of outcome history for each mouse using the model

log

�
PðcrðtÞÞ

1� PðcrðtÞÞ
�

=
X10
i = 1

bR
i ðRrðt� iÞ�Rlðt� iÞÞ+

X10
i = 1

bN
i ðNrðt� iÞ�Nlðt� iÞÞ + b0;

where crðtÞ= 1 for a right choice and 0 for a left choice, R= 1 for a rewarded choice and 0 for an unrewarded choice, and N= 1 for an

unrewarded choice and 0 for a rewarded choice. To predict response times (RT), we first z-scored the lick latencies by spout, to cor-

rect for differences due to relative spout placement and bias. Then, for each animal we fit the model

RTðtÞ =
X10
i = 1

bR
i ðRrðt� iÞ + Rlðt� iÞÞ+ b0;

including a variable for trial number. We fit exponentials with the equation ae�bR1:10=t to the regression coefficients, averaged across

animals, from the choice and response time models.

Data analysis: generative model of behavior with static learning
We applied a generative RL model of behavior in the foraging task with static learning rates.43 This RL model estimates action values

(QlðtÞ and QrðtÞ) on each trial to generate choices. Choices are described by a random variable, cðtÞ, corresponding to left or right

choice, cðtÞ˛fl; rg. The value of a choice is updated as a function of the RPE, and the rate at which this learning occurs is controlled

by the learning rate parameter a. Because we observed asymmetric learning from rewards and no rewards (Figure 1C), consistent with

previous reports,43,47 we included separate learning rates for the different outcomes. For example, if the left spout was chosen, then

Qlðt + 1Þ =
(
QlðtÞ+að+ ÞdðtÞ; if dðtÞ > 0
QlðtÞ+að�ÞdðtÞ; if dðtÞ < 0

Qrðt + 1Þ = zQrðtÞ;
where dðtÞ=RðtÞ �QlðtÞ and z represents the forgetting rate parameter. The forgetting rate captures the increasing uncertainty about

the value of the unchosen spout.

The Q-values are used to generate choice probabilities through a softmax decision function:

PðcðtÞ = rÞ = 1

1+ e�bðQr ðtÞ�QlðtÞ+biasÞ;

PðcðtÞ = lÞ = 1� PðcðtÞ = rÞ;
where b, the ‘‘inverse temperature’’ parameter, controls the steepness of the sigmoidal function. In other words, b controls the sto-

chasticity of choice.

Data analysis: generative model of behavior with meta-learning
We observed mouse behavior that the static learning model failed to capture and that suggested that learning rate was not constant

over time. Thus, we added a component to the model that modulates RPE magnitude and að�Þ (‘‘meta-learning’’). Because learning

should be slow in stable but variable environments, expected uncertainty scaled RPEs, such that learning is decreased when ex-

pected uncertainty is high. If the left spout was chosen, the values of actions were updated according to

Qlðt + 1Þ =
(
QlðtÞ+að+ ÞdðtÞð1� εðtÞÞ; if dðtÞ > 0
QlðtÞ+að�ÞðtÞdðtÞð1� εðtÞÞ; if dðtÞ < 0

Qrðt + 1Þ = zQrðtÞ;
where ε is an evolving estimate of expected uncertainty calculated from the history of unsigned RPEs:

yðtÞ = jdðtÞj � εðtÞ;

εðt + 1Þ = εðtÞ+ayyðtÞ:
The rate of RPE magnitude integration is controlled by ay. Deviations from the expected uncertainty are captured by unexpected un-

certainty, y, and may indicate that a change has occurred in the environment. Changes in the environment should drive learning to

adapt behavior to new contingencies so að�Þ varies as a function of how surprising recent outcomes are:

að�ÞðtÞ =
(
að�Þðt � 1Þ if dðtÞ > 0
j
�
yðtÞ+að�Þ0

�
+ ð1� jÞðað�Þðt � 1ÞÞ if dðtÞ < 0
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where að�Þ0 is the baseline learning rate from no reward and c controls how quickly unexpected uncertainty is integrated to update að�Þ.
As it is formulated, að�Þ increases after surprising no-reward outcomes. This learning rate was not allowed to be less than 0, such that

að�ÞðtÞ = 0; if að�ÞðtÞ < 0

To generate choice probabilities, the Q-values were fed into the same softmax decision function as the static-learning model.

We also examined two other meta-learning models from the Q-learning family of RL models. The first is an updated form of the

opponency model24 referred to as the global reward state model.49 In this model, a global reward history variable influences learning

from rewards and no rewards asymmetrically, as those outcomes carry different amounts of information depending on the richness of

the environment. In this model, the value of a chosen action, for example Ql, is updated according to

Qlðt + 1Þ = QlðtÞ+adðtÞ;

Qrðt + 1Þ = zQrðtÞ;
while the unchosen action value, Qr is forgotten with rate z. The prediction error, d, is calculated by

dðtÞ = RðtÞ �QlðtÞ+uRðtÞ;
whereR is the outcome,R is a global reward history term andu is a weighting parameter that can be positive or negative.R is updated

on each trial:

Rðt + 1Þ = RðtÞ+aR

�
RðtÞ�RðtÞ�:

Here, aR is the learning rate for the global reward term. The learned action values are converted into choice probabilities using the

same softmax decision function described above.

The secondmodel we tested is an adapted Pearce-Hall model50 in which the learning rate is a function of RPEmagnitude. If the left

action is chosen, Ql is updated by the learning rule

Qlðt + 1Þ =
(
QlðtÞ+ kð+ ÞaðtÞdðtÞ; if dðtÞ > 0
QlðtÞ+ kð�ÞaðtÞdðtÞ; if dðtÞ < 0

Qrðt + 1Þ = zQrðtÞ;
where kð+ Þ and kð�Þ are the salience parameters for rewards and no rewards, respectively. Having separate salience parameters is a

modification of the original model that we made to improve fit and mirror the asymmetry in our own meta-learning model and the

global reward state model. The learning rate a is updated as a function of RPE:

aðt + 1Þ = aðtÞ+ hðaðtÞ� jdðtÞjÞ:
Here,h controls the rate at which the learning rate is updated. In this way, themodel enhances learning rates when the recent average

of RPE magnitudes is large. This approach contrasts with our meta-learning model which diminishes the learning rate as a result of

large recent RPE magnitudes if they are consistent.

Data analysis: firing rate model
We developed a version of our meta-learning model to fit inter-trial firing rates to see if neural activity and choice behavior reported

similar dynamics of expected uncertainty. The learning components of themodels were identical, but the firing ratemodel fit z-scored

firing rates as a function of expected uncertainty:

mðtÞ = slope$ε+ intercept;

FRðtÞ � N ðmðtÞ;sÞ;
where slope and intercept scale expected uncertainty into the mean predicted firing rate, m. Real, z-scored firing rates, FR, are

modeled as a draw from a Gaussian distribution with mean m and some fixed amount of noise, s.

Data analysis: model fitting
We fit and assessed models using MATLAB (Mathworks) and the probabilistic programming language, Stan (https://mc-stan.org/)

with the MATLAB interface, MatlabStan (https://mc-stan.org/users/interfaces/matlab-stan) and the GPU optimization option (Nvidia

GeForce RTX 2080 Ti). Stan was used to construct hierarchical models with mouse-level hyperparameters to govern session-level

parameters. This hierarchical construction uses partial pooling to mitigate overfitting to noise in individual sessions (often seen in the

point estimates for session-level parameters that result from other methods of estimation) without ignoring meaningful session-to-

session variability. For each session, each parameter in the model (for example, ay for the meta-learning model) was modeled as a

draw fromamouse-level distributionwithmean m and variances. Models were fit using noninformative (uniform distribution) priors for

session-level parameters (½0;1� for all parameters except b which was ½0;10�) and weakly informative priors for mouse-level
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hyperparameters. These mouse-level hyperparameters were chosen to achieve model convergence under the assumption that in-

dividual mice behave similarly across days. The parameters were sampled in an unconstrained space and transformed into bounded

values by a standard normal inverse cumulative density function. The parameters for updating expected uncertainty, ay, and for up-

dating the negative RPE learning rate, c, were ordered such that j > ay. The ordering operated under the assumption that learning

rate should be integrated more quickly than expected uncertainty in order to detect change. The ordering also helped models to

converge more quickly. Stan uses full Bayesian statistical inference to generate posterior distributions of parameter estimates using

Hamiltonian Markov chain Monte Carlo sampling.117 The default no-U-turn sampler was used. The Metropolis acceptance rate was

set to 0.9–0.95 to force smaller step sizes and improve sampler efficiency. The models were fit with 10,000 iterations and 5,000

warmup draws run on each of 7 chains in parallel. Default configuration settings were used otherwise.

Data analysis: extracting model parameters and variables, behavior simulation
For extracting model variables (like expected uncertainty), we took at least 1,000 draws from the Hamiltonian Markov Chain Monte

Carlo samples of session-level parameters, ran the model agent through the task with the actual choices and outcomes, and aver-

aged eachmodel variable across runs. For comparisons of individual parameters across behavioral and neural models, we estimated

maximum a posteriori parameter values by approximating the mode of the distribution: binning the values in 50 bins and taking the

median value of themost populated bin. For simulations of behavior, we took at least 1,000 draws from the HamiltonianMarkov Chain

Monte Carlo samples of mouse-level parameters and simulated behavior and outcomes in a number of random sessions per sample.

For the transition analysis, that number was proportional to the number of rare transitions that each animal contributed to the actual

data. For other analyses that number was fixed.

Data analysis: model comparison
Weused two-fold cross-validation in order to compare the predictive accuracy of the behavioral models. For eachmouse andmodel,

behavior sessions were split into two groups and the model was fit separately to each group. Parameter samples from each fit were

used to calculate log pointwise predictive densities for the corresponding, held out data. The log pointwise predictive densities for

both fits were summed and normalized by number of trials.

Data analysis: linear regression models of neural activity
For comparisons of firing rates to the behavioral-model-generated uncertainty terms we regressed z-scored firing rates on z-scored

uncertainty using the MATLAB function ‘‘fitlm.’’ For some neurons and sessions, firing rates and model variables demonstrated

monotonic changes across the session. To control for the effect of these dynamics in comparisons of inter-trial interval firing rates

to model variables, we regressed out the monotonic effects for each term separately, then regressed the firing rate residuals on the

expected uncertainty residuals. Here, we found similar rates of correlation across the population of neurons. We also looked

for relationships between the neural activity and other model variables that evolved as a function of action and outcome history.

For the analysis of the dynamic foraging task data, we added total value ðQr +QlÞ, relative value ðQr � QlÞ, value confidence

ðjQr � QljÞ, RPE, and reward history as regressors in the same model (Figure S4E). Value confidence captures how much better

the better option is on each trial. Reward history is an arbitrarily smoothed history of all rewards, generated by convolving rewards

with a recency-weighted kernel. The kernel was derived from an exponential fit to the coefficients from the regression of choices on

outcomes. For the dynamic Pavlovian task data, we added RPE and reward history as regressors (Figure S5G).

Data analysis: linear mixed effect models
To analyze the changes in transition behavior we constructed a linear mixed effects model that predicted choice averages after tran-

sition points as a function of trial since transition, transition type, and the interaction between the two. The model is described by the

following Wilkinson notation:

choice averages � trial from transition � transition type

For assessing the affect of chemogeneticmanipulation, we added drug condition (vehicle or agonist 21) as a fixed effect aswell as the

interaction between transition type and drug condition:

choice averages � trial from transition � transition type + transition type � drug condition

In the case of simulated data, these fixed effects were grouped by mouse, treated as a random effect that affects both slope and

intercept, given by:

choice averages � trial from transition � transition type+ transition type � drug condition + ðtrial from transition

� transition type j mouseÞ+ ðtransition type � drug condition j mouseÞ
In all models, we z-scored all choice probabilities to center the data.
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Data analysis: autocorrelation controls
To control for potential statistical confounds in correlating two variables with similar autocorrelation functions—in particular, firing

rates of serotonin neurons and dynamics of expected uncertainty—we simulated each variable and compared it to the real data.

We simulated 1,000 expected uncertainty variables by using maximum a posteriori parameter estimates to simulate a random

sequence of choices and outcomes of the same length as the real session. For each simulation we extracted model variables using

the sampling and averaging method described above. Linear regressions of real firing rates on each simulated variable were per-

formed. If the t-statistics from the regression of real firing rate on real model variable fell beyond the 95% boundary of the distribution

of t-statistics from the comparisons with simulated variables, then the relationship was deemed significant. We view this control anal-

ysis as an estimate of a lower bound on the true rate of correlated variables; for example, in a recent paper, only approximately one-

third of true correlations were recoverable with this simulation.51

Conversely, we simulated neural data with autocorrelation functions matched to those of the actual neuron. For each neuron, we

computed the autocorrelation function for lags of 10 trials and calculated the sum. The autocorrelation function sum was mapped

onto the scale of a half-Gaussian smoothing kernel (width of 10 trials) using a log transformation. Neurons were then simulated as

a random walk such that the firing rate at a given trial was the sum of the previous 10 trials weighted by the smoothing kernel

plus some normally distributed noise ðN ð0;1ÞÞ. We found that the autocorrelation functions and the distributions of simulated firing

rates were similar to those of the real neurons. For each real neuron, we performed 1,000 simulations and compared them to the real

expected uncertainty in the same way as described above.
Current Biology 32, 1–14.e1–e7, February 7, 2022 e7
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Figure S1. Dynamic foraging task details, related to Figure 1. (A) Basic session statistics. Smoothed
reward history (right) was calculated by smoothing raw outcomes with an exponential kernel derived from the
regression coefficients of the logistic model. (B) Another example session as in Figure 1B. (C) Lick behavior from
the example session in Figure 1B. Lick rasters (bottom) and density functions of smoothed licks (top) aligned to
the CS (left) or the first lick (right). (D) Fraction of higher-probability choices, rewards per trial, and the sum
of these quantities for mice, random choices (paired t-test between mice and random: higher-probability choice,
t94 = 13.0, p < 10−21; rewards per trial, t94 = 11.6, p < 10−19; sum, t94 = 13.1, p < 10−22), an optimized volatile
Kalman filter agent (paired t-test between mice and VKF agent: higher-probability choice, t94 = −20.7, p < 10−36;
rewards per trial, t94 = −19.6, p < 10−34; sum, t94 = −21.4, p < 10−37), and a “clairvoyant” model that knew
reward probabilities. (E) Linear regression coefficients of response time on reward history. Coefficients for switch
trials and trial number in session were included in the regression. (F) Lick latency was faster on trials in which
mice repeated the same choice (“stay”) compared to when they made a different choice (“switch”; paired t-test,
t47 = −12.5, p < 10−15).
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Figure S2. Dynamics of the meta-learning model variables, related to Figure 2. (A) Probability
of repeating a rewarded choice (“win-stay”) and switching following an unrewarded choice (“lose-shift”) around
transitions for choices to the previous high or medium spout. (B) Choice averages aligned to the transition point
estimated from the step function model fit to mouse (left) or simulated behavior (middle and right). (C) Top:
trial-by-trial dynamics of expected uncertainty (ε), unexpected uncertainty (υ), reward prediction error (δ), and
negative learning rate (α(−)) around transitions in reward probabilities (cf. Figure 2D). Mean ± S.E.M. z-scored
values are plotted for each variable. Bottom: maximum a posteriori (MAP) parameter estimates. Scale bars:
0.1. (D) Per-trial log predictive densities of held out data from a two-fold cross-validation. (E) Experienced
block lengths were similar between mice and simulated behavior from the meta-learning model. (F) Trial-by-trial
dynamics of model variables in experienced blocks. Arrow in left panel indicates the “crossing point” referred to
in (D). (G) The number of trials it took the model to discriminate the expected uncertainty in high compared
to medium blocks (“crossing point”) was less than the experienced block length. Ignores 1 mouse that did not
distinguish within 30 trials or distinguished before block beginning.
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Figure S4. Serotonin neuron firing rates correlate with expected uncertainty, related to Figure
4. (A) Representative histological section of the midbrain from electrophysiological experiments, showing ChR2-
EYFP expression (green) in dorsal raphe serotonin neurons. (B) Example of identified serotonin neuron firing
in response to most light stimuli activating ChR2 with short latency and similar extracellular action potential
waveform. (C) Mean and SD of firing latency of identified serotonin neurons. (D) Top, example inter-trial interval
firing rate of a neuron and expected uncertainty with the monotonic trends regressed out of both separately. Most
significant correlations persisted after these trends were regressed out (82%, 27 of 33 neurons). Bottom, scatter
plots of inter-trial interval firing rates of two example serotonin neurons that were significantly correlated with
ε. (E) Distributions of t-statistics of regressors in a multivariate generalized linear model of inter-trial interval
firing rate. (F) t-statistics from neurons compared with true and simulated expected uncertainty. (G) Example
simulated neuron with an autocorrelation function (ACF) matched to the real neuron. Probability density scale
bars: 0.2. (H) Top: ACF matching between real neuron and simulations. Bottom: distribution of t-statistic from
the real neuron (black line) and simulations (green). Dashed gray line shows 95% boundary from the distribution
of simulations. (I) t-statistics from real and simulated neurons compared with expected uncertainty. (J) Success of
firing rate model fit correlates with t-statistic comparing firing rate to behavior-model-derived expected uncertainty
(R2 = 0.40, p < 104).
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Figure S5. Serotonin neuron firing rates correlate with expected uncertainty in a dynamic Pavlovian
task, related to Figure 6. (A) Schematic of meta-learning model applied to behavior in the dynamic Pavlovian
task. The value (V ) of the stimulus is updated analogously to the way action values (Ql and Qr) are updated in
the dynamic foraging task. V is mapped to licks through a linear scaling and sampling from a Poisson distribution.
(B) Top: expected value of the cue tracks experienced reward probability (rewards smoothed with a boxcar filter
with a length of 5 trials) in the example session from 6B. Bottom: anticipatory licks are predicted from the
model. (C) Lick rate after no reward scales with unsigned RPE (|δ|, regression coefficient = 0.68, R2 = 0.11) and
unexpected uncertainty (υ, regression coefficient = 0.51, R2 = 0.083). (D) Transition behavior in the dynamic
Pavlovian task when probabilities changed from high to low or medium to low. Left: mice. Middle: static learning
model simulated behavior. Right: meta-learning model simulated behavior. (E) Per-trial log predictive densities
of held out data from a two-fold cross-validation. (F) Regression results as in Figure 6F,G, removing monotonic,
session-long trends. (G) Distributions of t-statistics of regressors in a multivariate generalized linear model of
inter-trial interval firing rate. (H) Left: t-statistics from neurons compared with true and simulated expected
uncertainty. Right: t-statistics from real and simulated neurons compared with expected uncertainty.
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Figure S6. Inhibition of serotonin neurons does not affect lick latency, related to Figure 7. (A)
Representative histological section showing DREADD expression in dorsal raphe serotonin neurons (reproduced
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in lick latency comparing vehicle injections to agonist 21 injections (paired t-test, t5 = −2.17, p = 0.08). (C)
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