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Abstract1

Psychopathology is vast and diverse. Across distinct disease states, individuals exhibit symptoms2

that appear counter to the standard view of rationality (expected utility maximization). We argue3

that some aspects of psychopathology can be described as resource-rational, reflecting a rational4

trade-off between reward and cognitive resources. We review work on two theories of this kind:5

rational inattention, where a capacity limit applies to perceptual channels, and policy compression,6

where the capacity limit applies to action channels. We show how these theories can parsimoniously7

explain many forms of psychopathology, including affective, primary psychotic, and neurodevelop-8

mental disorders, as well as many effects of psychoactive medications on these disorders. While9

there are important disorder-specific differences, and the theories are by no means universal, we10

argue that resource rationality offers a useful new perspective on psychopathology. By emphasizing11

the role of cognitive resource constraints, this approach offers a more inclusive picture of rational-12

ity. Some aspects of psychopathology may reflect rational trade-offs rather than the breakdown of13

rationality.14
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Introduction16

We lack a basic understanding and language to explain psychopathology, and without this under-17

standing, we are limited in our ability to diagnose, treat, and prognosticate, among others. Here,18

we argue that nascent work at the intersection of cognitive science, economics, and information the-19

ory has the potential to provide the necessary explanatory framework. We begin with the premise20

that biological agents are inherently resource limited. Resource rationality formalizes the notion21

that people are doing the best they can, subject to natural information-processing constraints.22

This resource-rational perspective was developed to explain how people can perform optimally in23

some domains, and deviate from optimality in other domains (Lewis et al., 2014; Gershman et al.,24

2015; Griffiths et al., 2015; Lieder and Griffiths, 2020; Bhui et al., 2021; Gershman, 2021). We25

seek to extend this perspective to gain insight into symptoms that may be shared across states of26

psychopathology.27

The nervous system evolved in the face of myriad constraints, including computational costs28

(Bossaerts et al., 2019), interference costs (Musslick et al., 2016), metabolic costs (Gailliot and29

Baumeister, 2007), and others (Shenhav et al., 2017). We focus here on channel capacity, an30

upper bound on how much information can be transmitted across brain regions (Attneave, 1954;31

Miller, 1956). We expound two theories of capacity constraints, one applied to perception and32

the other to action. We will focus primarily on dopamine, as this is the neurotransmitter system33

with the greatest support for our theories. Psychopathology is far more complex than a single34

neurotransmitter system and we leave out other relevant systems and brain structures not because35

they are unimportant, but because the link between them and our theories is more tenuous. We36

consider a deeper focus on neurobiology outside the scope of this perspective, which we aim to keep37

at a more theoretical level.38

Before getting into details, it is worth stepping back to appreciate the larger conceptual pivot39

that resource rationality invites us to make. The concept of psychopathology was traditionally40

based on a division into “pathological” and “non-pathological” minds, but this division has been41

under strain from both empirical and sociological directions. Empirically, it has become increasingly42

recognized that many—perhaps all—mental disorders are points on a continuum; there is often no43

clean dividing line between pathological and non-pathological. Sociologically, the continuum view44

has led to a “neurodiversity” movement which aims to reframe pathological states as differences45

rather than deficits. As we will explain below, the resource rationality framework suggests a46

formalization of the continuum view, where individual differences in cognitive capacity lead to47

different optimal solutions. All of these solutions are optimal, yet they may lead to highly divergent48

phenotypes. The population may cluster around certain solutions, but these solutions do not49

necessarily reflect a normatively privileged status. Accepting this proposition opens the door to a50

computationally informed destigmatization of psychopathology.51

Resource rationality does not abandon the notion that some states occupy extremes that require52

medical treatment. By analogy, a person with missing limbs may be doing the best they can with53

their available physical resources, but this does not mean that they couldn’t do better if supplied54

with prosthetic limbs. Similarly, resource rationality does not guarantee any particular absolute55

performance level; it only guarantees that an individual will attain a performance level that is56

superior to the set made available by their supply of cognitive resources. Psychiatric treatment57

may enable an individual to attain higher absolute performance levels. Resource rationality thus58

reconciles the continuous nature of psychopathology with the ostensible benefits of treatment.59

Rational inattention: capacity limit applied to perception60

Given the limitations of biological sensors as well as the statistical challenges of perception, the61

brain relies on prior, contextual information to constrain what it perceives. Broadly speaking,62

rational inattention asserts that agents rationally allocate their limited attentional resources (Sims,63

2003; Woodford, 2009; Maćkowiak and Wiederholt, 2009; Mackowiak et al., 2018). An equivalent64
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interpretation, as we will see, is that agents can pay a cognitive cost to obtain a more veridical65

representation of the world, so long as it does not exceed channel capacity.66

Consider an agent inferring a latent variable, such as the time interval between two events.67

Because sensory signals are imprecise (e.g., time-keeping is noisy), the agent cannot be certain68

about the underlying latent variable. Bayes’ rule states that the agent should combine its sensory69

evidence with its prior beliefs (e.g., the typical distribution of time intervals) to compute a posterior70

probability distribution over the values of the latent variable. This is the standard setup in Bayesian71

models of perception. Importantly, sensory precision is traditionally taken to be outside the control72

of the agent—an exogenous factor. Rational inattention models generalize this setup to endogenize73

sensory precision, treating it as a function of attentional control. In other words, sensory precision74

is modeled as a kind of “cognitive action” that the agent can take, subject to a cognitive cost.75

To formalize this idea, we need to first be more precise about what we mean by attention. Fol-76

lowing prior work, we conceptualize attention in terms of mutual information (Itti and Baldi, 2009;77

Feldman and Friston, 2010). Mutual information expresses how much our uncertainty about the78

latent variable is reduced (on average) after observing data. Intuitively, attending to a signal means79

extracting information from it—i.e., reducing uncertainty. This information extraction process can80

be viewed as a kind of communication channel mapping inputs (signals) to outputs (percepts). Like81

all physical channels it is subject to a capacity limit (an upper bound on mutual information).82

Agents will earn more reward on average when their sensory precision is higher. We will refer83

to the relationship between sensory precision and reward for a given task as the attentional incen-84

tive. Thus, an agent should increase sensory precision when the attentional incentive is higher. A85

second factor determining precision is the attentional cost incurred by increasing precision, which86

implicitly depends on the capacity limit. Evidence for these predictions, along with a more tech-87

nical exposition, is covered further in Gershman and Burke (2022). Figure 1A summarizes the88

predictions.89

Building a bridge to neurobiological mechanisms, Mikhael et al. (2021) developed a rational90

inattention account of tonic dopamine. Under this account, tonic dopamine subsumes the average91

reward theory of tonic dopamine, where it encodes the context (state)-specific average reward rate92

(Niv et al., 2007; Beierholm et al., 2013; Hamid et al., 2016). Specifically, rational inattention does93

not propose a different role for how dopamine encodes reward than what has been posited previ-94

ously. Tonic dopamine, by reporting average reward, is hypothesized to set the baseline for learning95

the value of specific actions within a given state, and can give rise to phenomena like asymmetric96

learning and exploration/exploitation, ideas which we will elaborate below. Because the rational97

inattention framework couples average reward to sensory precision, it predicts that changes in tonic98

dopamine levels should control the allocation of attention, consistent with many pharmacological99

and physiological findings. The reward-attention coupling also provides an integration of the aver-100

age reward theory with the active inference theory developed by Friston et al. (2012), according to101

which tonic dopamine controls the precision (“salience”) of external and internal cues (see also Shi102

et al., 2013, for a related theory applied to time perception).103

Policy compression: capacity limit applied to action104

All actions, from the mundane to the significant, require memory. These memories are stored in the105

brain as policies, or mappings from states to actions, where states are defined as the representation106

of information needed to predict reward (Sutton and Barto, 2018). As an example, imagine being107

tasked with purchasing groceries for the family. The state representation includes the items available108

for purchase as well as the individual preferences of family members, and the actions include either109

purchasing or not purchasing an item. Intuitively, you can satisfy each individual’s preferences,110

but at the cost of a mentally-demanding trip to the store. If you choose instead to ignore certain111

preferences, you can reduce cognitive demand, by reducing the number of items that must be112

remembered, at the cost of reducing the overall satisfaction of the family.113

Policy compression formalizes this intuition, by conceptualizing the mapping from states to114
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actions as a communication channel—just like we posited for perception—and postulating that115

this communication channel has a limited capacity (Parush et al., 2011; Gershman, 2020; Lai and116

Gershman, 2021). Under policy compression, agents must optimize the trade-off between reward117

and policy complexity, which we define as the mutual information between states and actions.118

Because policy complexity is a lower bound on the number of bits needed to store a policy in119

memory, more complex policies necessitate more bits. If the policy complexity exceeds capacity,120

then agents must “compress” the policy in order to transmit it across brain regions. Policies with121

high complexity require greater memory and can lead to greater reward. In contrast, policies with122

low complexity require less memory to implement, but are generally suboptimal. At the extreme, if123

the policy is the same in every state, then the policy complexity is minimized (mutual information124

is 0).125

The optimal capacity-limited policy has a number of interesting features. First, it takes the126

form of the ubiquitous softmax function, in which an “inverse temperature” parameter governs the127

stochasticity in the policy. When capacity is high, policies become more deterministic (via a larger128

inverse temperature parameter) and concentrate on the action with maximal value. When capacity129

is low, policies become less state-dependent (via a smaller inverse temperature parameter). More130

specifically, the inverse temperature is lower (i.e., choices become more random) when varying the131

policy complexity has a greater effect on reward, which occurs at low values of policy complexity.132

Second, the optimal policy includes a perseveration term. When capacity is large, the inverse133

temperature term is large and actions are largely driven by the values of the underlying states.134

When the capacity is small, the inverse temperature term decreases, and the perseveration term135

can dominate the policy. Third, more complex policies result in slower response times, because the136

brain must inspect more bits to find the coded state (Hick, 1952; Lai and Gershman, 2021; Bari137

and Gershman, 2023). These regularities are summarized in Figure 1B.138

Psychiatric phenomena139

Mania140

Rational inattention provides a rich language for describing numerous symptoms of mania, which141

we propose is best understood as an individual’s belief that their precision has increased, without142

an increase in true precision. In other words, mania may be the result of precision miscalibration,143

where precision is overestimated (Mikhael et al., 2021).144

Clinically, mania can be a distinctly euphoric state (Cassidy et al., 1998b), one that patients are145

often unwilling to request or accept treatment for (Baldessarini et al., 2008). It is not uncommon for146

patients with bipolar disorder, a disorder characterized by oscillations between mania and depres-147

sion, to self-discontinue medications, either because it makes them feel ‘depressed’ (e.g., relative to148

prior mania/hypomania) or in the hopes that they may experience a manic state (Devulapalli et al.,149

2010; Crowe et al., 2011). Anecdotally, some patients who accept treatment are doing so not for150

the mania itself to be treated, but because personal experience has taught them that their mania151

can develop into a mania with psychosis. Rational inattention provides a clue for the intoxicating152

effects of mania: a subjective increase in precision is associated with an increase in average reward.153

If mania causes patients to experience the world as highly rewarding, it’s understandable why they154

would desire to remain in that state.155

This increase in the estimate of average reward manifests as an asymmetry in how agents156

estimate value functions. In mania, because agents come to expect reward (i.e., the prior over157

rewards is shifted higher), they exhibit a persistent ‘optimism’ in which their value functions are158

shifted higher, following either positive or negative feedback. In other words, relative to an agent159

with a veridical estimate of average reward, optimistic agents come to expect reward even when they160

objectively should not. In mania, this is consistent with clinical intuition and the empirical literature161

(Alloy et al., 2016; Kwan et al., 2020). Note that rational inattention does not predict faster162
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A)

Low capacity

High capacity

Attention

Rational inattention: Capacity limit applied to perception
Stimulus Perception

Decreased attention
Decreased average reward
Increased cost of information
Pessimistic value estimation
Increased exploration
Slowed time perception
Susceptibility to central tendency effect

Increased attention
Increased average reward
Decreased cost of information
Optimistic value estimation
Decreased exploration
Faster/veridical time perception
Insensitivity to central tendency effect

B) Policy compression: Capacity limit applied to action

↑ reward
↓ cost of info

State

Low budget
High budget

Low capacity

High capacity

State Action

Low budget
High budget

Generic items
Generic items

State Action

Low budget
High budget

Generic items
Premium items

Decreased average reward
Increased perseveration
Increased exploration
Faster response times

Increased average reward
Decreased perseveration
Decreased exploration
Slower response times

Effects

Policy Effects

Figure 1: Perception and action as communication channels.
A: Rational inattention describes perception as a communication channel, subject to a capacity
limit, or upper bound on amount of information that can be transmitted across sensory channels.
In this example, we highlight a stimulus being encoded by the brain either under low capacity
conditions or high capacity conditions. The brain is able to increase the capacity of encoding by
devoting greater attention - the cognitive process of reducing uncertainty about a stimulus. Under
rational attention, the factors that increase attention are increased reward (in our framework, the
attention incentive) or decreased cost of information. The consequences of encoding at differing
capacities is highlighted to the right. Photo obtained from Smithsonian’s National Zoo and Con-
servation Biology Institute open access images.
B: Policy compression describes action selection as a communication channel, subject to a capacity
limit. In this example, an agent is tasked with purchasing groceries under two possible states:
low budget, or high budget. With a low budget, the optimal policy is to purchase generic items.
With a high budget, the optimal policy is to purchase premium items. Under conditions of low
capacity, the agent is state-insensitive, and purchases generic items regardless of the state. Under
conditions of high capacity, the agent is highly state-sensitive, and exhibits the optimal policy. The
consequences of these capacity limits is highlighted to the right.
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learning (e.g., the trial-to-trial change in expectation) from positive feedback under an optimistic163

prior, only that the value function is initialized optimistically. Learning is otherwise consistent with164

the predictions of Bayesian inference, in which more surprising observations - those farther from165

the prior - are learned faster.166

High estimated precision implies less dependence on a stored internal prior. Patients in a manic167

state display the expected hallmarks—they are highly attentive, ever-present, keenly aware of their168

environments, and outwardly directed. In the context of interval timing, high estimated precision169

also predicts a faster internal clock (see Mikhael et al., 2021). In mania, patients exhibit myriad170

symptoms consistent with a faster internal clock. They are are classically psychomotor agitated:171

they appear to be moving in fast motion, restless and always on the move, with rapid speech that172

can be difficult to interrupt (Cassidy et al., 1998a). A faster clock also results in faster thought,173

consistent with subjective experience and occasionally at a pace so rapid as to be aversive. The174

subjective sense of time is sped up (Bschor et al., 2004) and can become so grossly miscalibrated175

that patients will sense that tens of minutes have elapsed after only a minute or two.176

In the context of reward learning, overestimated precision induces heightened sensitivity to177

noise, which may appear as a form of “exploration” (choice randomness). Clinically, this manifests178

in what the Diagnostic and Statistical Manual of Mental Disorders refers to as an “increase in goal-179

directed activity” (American Psychiatric Association, 2022). Patients in a manic state are famous180

for starting (but not necessarily completing) dozens of new projects, hobbies, books, television181

shows, and so on (Dailey and Saadabadi, 2018). In general, the new activities are consistent with182

what the patient feels is worth pursuing, and not just activity for its own sake. This is generally183

consistent with the notion of value-based random exploration: activities tend to be those of higher184

value.185

Distractibility, a key diagnostic criterion for mania, is another facet of heightened noise sen-186

sitivity due to precision miscalibration. On this account, distraction arises when task-irrelevant187

distractors are misinterpreted as task-relevant cues.188

One aspect worth emphasizing is that all of the above phenomena, with the exception of dis-189

tractibility, are consistent with a true increase in precision and therefore a true increase in capacity.190

How can we discern a precision overestimation account of mania from a true increase in precision?191

The former predicts degraded perception while the latter predicts improvement. Consistent with192

precision overestimation, the literature supports the idea that perception is degraded in mania193

(Kohler et al., 2011; O’Bryan et al., 2014). As a separate prediction, the precision overestimation194

hypothesis predicts an increase in random exploration, while true precision increase predicts a de-195

crease. There is some evidence to suggest increased exploratory behavior in mania (Ryu et al.,196

2017), although there is more work to be done.197

Depression198

Under rational inattention, if mania can be described by an increase in precision (either real or199

perceived), then depression in many ways can be viewed as its opposite. With a decrease in precision200

comes an increase in reliance on an internal prior. Patients with depression frequently speak of a201

subjective ‘grey’-ness of experience, with a sensation that they cannot perceive or experience the202

world as they did when they were well. If, in depression, the sensory precision is reduced, then the203

posterior will be dominated by the prior, and subjective experience will necessarily be less rich and204

less modulated by perception of the outside world. As a result, patients appear inattentive to the205

outside world (Keller et al., 2019), with their focus directed inward.206

Just as increased sensory precision speeds up the internal clock, decreased precision slows it207

down (Bschor et al., 2004). This too explains the general slowness observed in depression, with208

overt psychomotor slowing manifesting as sluggish gait and movement, turning mundane tasks such209

as dressing and showering into time-consuming chores. Speech itself slows down (Koops et al., 2023)210

and patients report a sense of slowed thinking.211
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A reduction in precision signals to an optimal agent to expect reduced reward. This may explain212

the subjective intolerability of depressive states. It comes as no surprise that depression is a risk213

factor for suicidal thinking (Franklin et al., 2017), though there is some circularity here as suicidal214

thoughts are a diagnostic criteria for depression. A reduced expectation of reward also shifts the215

balance of learning towards pessimism. This may lead to the sense of hopelessness that is pervasive216

in depression (Abramson et al., 1989; Cusin et al., 2010). Reduced precision also renders behavior217

less responsive to feedback, consistent with what has been observed in depression (Steele et al.,218

2007). From the perspective of reinforcement learning theory, this is consistent with a reduced219

learning rate, which has been observed in depression (Brown et al., 2021), though other results220

have been equivocal (Chen et al., 2015).221

Patients may be convinced that they lack agency to meaningfully affect their lives. Here we222

predict that depression may also reduce the attentional incentive, even in circumstances where223

patients have clear agency. In other words, patients will perceive a lack of controllability, even224

if this is at odds with reality (Miller and Seligman, 1975). There is a long and rich literature225

on learned helplessness in depression (Maier and Seligman, 1976, 2016), and rational inattention226

provides another perspective: if the attentional incentive is decreased or erased, rational agents227

should not allocate attention to the task at hand, as attention is only worth the cost if outcomes228

can be improved. This in turn can manifest as reduced motivation—after all, why engage if the229

result won’t change? Further, clinical experience suggests that to the extent that patients are230

motivated to interact with the world, they need to frequently be reminded of activities they find231

highly rewarding (i.e., encouraging patients to exploit). This is consistent with the idea that232

exploitation should be reduced under conditions of low capacity, consistent with what has been233

observed with reinforcement learning modeling in depression (Blanco et al., 2013).234

Patients with dense depression are known to have cognitive deficits in numerous domains (Hack235

et al., 2023). Under policy compression, reduced capacity for actions is associated with a decrease236

in working memory and an increase in perseverative behavior. These deficits manifest clinically,237

as patients can have a difficult time retaining basic information and can be perseverative in their238

thoughts and their behaviors (Trick et al., 2016). These deficits have been identified in the lab, as239

depressed patient show pronounced perseverative errors in set shifting tasks (Martin et al., 1991;240

Channon, 1996; Ilonen et al., 2000; McGirr et al., 2012) and have working memory deficits (Channon241

et al., 1993; Burt et al., 1995; Christopher and MacDonald, 2005; Rose and Ebmeier, 2006).242

Unlike mania, we make no strong claims about whether depression is due to a true decrease in243

precision vs. a decrease in estimated precision, as both of these mechanisms will give rise to all the244

symptoms we discussed. One conceptual difference is that a true decrease in precision results in a245

decrease in capacity, whereas precision underestimation only decreases perceived capacity, rather246

than actual capacity. In the latter case, cognitive abilities should be intact, in some sense, with247

deficits rendered by patients perceptions of their own abilities. In line with this thought, there248

is some evidence that the cognitive deficits in depression are mediated by variables such as effort249

(Moritz et al., 2017).250

Stimulants251

Prescribed stimulants fall into two major classes, amphetamines and methylphenidate. Amphetamines252

function, in part, by inducing the release of dopamine (Schiffer et al., 2006) whereas methylphenidate253

functions as a stronger inhibitor of the dopamine transporter (John and Jones, 2007), a protein254

which reuptakes dopamine into presynaptic terminals. Despite differences in mechanism (with some255

overlap), these drugs effectively increase synaptic dopamine concentration (Kuczenski and Segal,256

1997). Prior work has shown that stimulants decrease the energy the brain uses to perform cogni-257

tively demanding tasks, analogous to a reduction in the attentional cost parameter under rational258

inattention (Volkow et al., 2008). Individuals take these medications to feel more attentive and259

focused. Time perception is sped up (Lake and Meck, 2013), in line with predictions, and with a260

faster clock comes faster movements, faster speech, and faster thinking. The mental states induced261
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by stimulants are distinctly pleasurable and contribute in no small part to potential for misuse.262

Overall, there is remarkable similarity between the effects of stimulants and mania, but they are263

by no means identical.264

Antipsychotics265

Under rational inattention, if increasing dopamine can recapitulate the effects of increased capacity,266

then decreasing dopamine should do the opposite. Clinically, antipsychotics serve this function, a267

subset of which functions, in part, by blocking the D2 receptor (McCutcheon et al., 2023). Further,268

recent work has argued that clinically-efficacious antipsychotics, include those with minimal direct269

dopaminergic effects, function by modulating D1 receptor-expressing neurons in the striatum (Yun270

et al., 2023). Rational inattention on its own does not explain how antipsychotics reduce the271

hallucinations, delusions, and disorganized thought for which they are indicated, but we believe272

it does help explain the intolerability of this class of medications (Valenstein et al., 2004; Ascher-273

Svanum et al., 2010). In fact, the largest trial of antipsychotics to date chose ‘discontinuation274

of treatment for any cause’ as a primary outcome (Lieberman et al., 2005), which substantiates275

their intolerability. Patients who have tried numerous antipsychotics describe a sense of feeling276

subjectively slowed, cognitively dulled, with limited attention, and a sense that they are perceiving277

the world through a fog. All of these effects are consistent with a reduced capacity. Antipsychotics278

must be dosed carefully in psychotic illnesses, as they can exacerbate the cognitive symptoms that279

limit the ability of patients to function (Kelley et al., 1999; Kasper and Resinger, 2003), an entity280

once known as neuroleptic-induced deficit syndrome (Lader, 1993; Schooler, 1994)281

Attention-deficit/hyperactivity disorder282

Inattention is a cardinal feature of attention-deficit/hyperactivity disorder (ADHD), and may natu-283

rally be explained under rational inattention as reduced sensory precision. This explains the failure284

to ‘give close attention,’ ‘difficulty sustaining attention,’ and ‘often easily distracted by extraneous285

stimuli’ that are diagnostic symptoms. The increased reliance on the internal prior can contribute286

to the sense that their minds seem elsewhere. Distractibility and careless mistakes can be thought287

of as an increase in random exploration (Hauser et al., 2014) which, for reasons stated previously,288

is increased under more stringent capacity limits. The dislike of mentally effortful tasks is also289

well-explained: if one cannot provide the attention necessary to complete a task, due to reduced290

capacity, then it is rational to avoid those tasks. If stimulants work as proposed above, then the291

rationale for their use in ADHD is clear.292

Schizophrenia293

Schizophrenia and other psychotic illnesses are primarily characterized by their positive symptoms:294

hallucinations, delusions, and disorganized thought. In contrast, the negative symptoms more295

frequently restrict the ability of patients to fulfill typical societal roles and responsibilities (e.g.,296

maintaining friendships, managing household tasks), in part due to our inability to adequately297

treat them (Aleman et al., 2017). These symptoms include amotivation, asociality, blunted affect,298

and general cognitive impairments (Correll and Schooler, 2020). From the perspective of policy299

compression, a number of these symptoms can be explained by a reduction in channel capacity.300

Indeed, patients with chronic schizophrenia exhibit reduced capacity (Gershman and Lai, 2021).301

This can be linked to blunted affect (decreased expressivity of emotions) and alogia (the reduction302

in quantity of words spoken). Reduced capacity can also explain working memory deficits, which303

have been robustly demonstrated in schizophrenia (Forbes et al., 2009; Collins et al., 2014). We304

note that reduced capacity in chronic schizophrenia is confounded by chronic antipsychotic use,305

which may contribute independently to changes in capacity.306
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Parkinson’s disease307

Parkinson’s disease is characterized by widespread degeneration of the dopaminergic system (as308

well as other neuromodulatory systems). From the perspective of policy compression, individu-309

als with Parkinson’s disease have reduced capacity compared to age-matched controls (Bari and310

Gershman, 2023). This reduced capacity can explain a number of cognitive symptoms seen in311

Parkinson’s disease, including: memory problems, language difficulties (word-finding difficulty,312

naming/misnaming, comprehending complex sentence structure, dysarthria), and general prob-313

lem solving and executive functioning difficulties (Dubois and Pillon, 1996; Verbaan et al., 2007).314

Providing patients with dopaminergic agents increases capacity for actions, allowing subjects with315

Parkinson’s disease to entertain more complex policies (Bari and Gershman, 2023). This is consis-316

tent with clinical observation that dopaminergic therapy can relieve a number of cognitive symp-317

toms (although not to the same extent as motor symptoms; Dubois and Pillon, 1996; Robbins and318

Cools, 2014). Counterintuitively, in our analysis, dopaminergic therapy slows participants down, as319

measured by response rates, which is opposite of the general effect of these treatments in relieving320

bradykinesia. This is consistent with policy compression, which predicts that more complex policies321

require greater time to decode (i.e., map from the the compressed representation to overt actions;322

Hick, 1952; Lai and Gershman, 2021).323

Rational inattention provides a complementary perspective. Reduced capacity explains re-324

duced attention and slower speed of thinking. It also explains the observation that, in subjects325

with Parkinson’s disease, dopaminergic therapy restores sensitivity to feedback (Frank et al., 2004;326

Rutledge et al., 2009). Another manifestation is the stronger central tendency effect in Parkinson’s327

disease. In the context of interval timing, this effect describes a tendency of subjects to overre-328

produce short intervals and underreproduce long intervals in timing reproduction tasks (Malapani329

et al., 1998, 2002; Shi et al., 2013). Under rational inattention, this is consistent with a strong330

migration towards the prior induced by conditions of low attention / low tonic dopamine (Mikhael331

et al., 2021; Mikhael and Gershman, 2022). Consistent with this account, providing subjects with332

dopaminergic medication reduces the magnitude of the central tendency effect.333

Neurodevelopmental disorders: Specific learning disorders334

Several specific learning disorders manifest as difficulties in processing specific sources of infor-335

mation. Examples include difficulties in processing language, written information, numerical /336

mathematical information, and social information. One consequence is a decrease in reliance on337

these sources, which over time atrophies the brain’s ability to use them. Under rational inatten-338

tion, if these processing difficulties arise from aberrant precision, then it is rational to decrease339

reliance on them and focus on higher precision sources of information. This has the deleterious340

consequence of diminishing the brain’s ability to use this information, which can create difficulties341

with functioning later in life. This highlights the need to design curricula that force the brain out of342

the rational but deleterious underreliance on this aberrant information. Instead, if individuals can343

be trained to use this low-precision information, precision may increase with experience, especially344

during valuable critical periods early in life. We turn the interested reader to Jones et al. (2023)345

for a thoughtful perspective.346

Perseveration347

Under policy compression, perseveration emerges as the optimal policy under low capacity. If low348

capacity is common to numerous psychiatric conditions, then we would expect perseveration to349

arise as a transdiagnostic symptom. Indeed, perseveration is observed in numerous psychiatric350

conditions, some of which we have detailed above (Serpell et al., 2009). As an extreme, in delirium,351

it is not uncommon for patients to repeat answers to the first question asked, even if the answer is352

nonsensical. Patients can act out more complex policies, like those seen in addiction (Lane et al.,353
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2007; Woicik et al., 2011), which are nevertheless resistant to change. It is seen in conditions ranging354

from schizophrenia (Crider, 1997), to depression (Martin et al., 1991), to frontal lobe pathology355

and other neurodegenerative conditions (Joseph, 1999; Oosterloo et al., 2019), to name a few.356

Discussion and limitations357

Our resource-rational framework has a remarkable degree of overlap with prior work in learning358

and decision making. First, much of the neurobiology of reward-based decision making is motivated359

by reinforcement learning theory, which has furnished the field with error-driven learning models360

(Sutton and Barto, 2018). In these models, reward prediction errors (the difference between actual361

and expected reward) drive sequential learning. As explained in the Appendix, one form of rational362

inattention uses this familiar error-driven update rule to estimate the posterior over the parameter363

of interest; if the parameter is reward, then this rule is the familiar reward prediction error. In364

deriving policy compression, we assumed the value function was known, an assumption which cannot365

hold for agents learning in novel environments. We have previously developed process models to366

iteratively estimate the value function using familiar error-based update rules (Gershman and Lai,367

2021). We withhold a deeper discussion of process models as this remains an active area of research.368

Second, policy compression provides insights into habits, repetitive behaviors that are famously369

insensitive to outcome devaluation or contingency degradation, and which can interfere with goal-370

directed behavior (Dickinson, 1985; Wood and Rünger, 2016; Miller et al., 2019). Similarly, low371

complexity policies are perseverative since they are dominated by the marginal action distribution,372

which is not dependent on rewards (Gershman, 2020). Policy compression does not, however,373

explain the shift from “goal-directed” behavior to habitual behavior that occurs with training374

(Balleine and O’Doherty, 2010). One hypothesis is that the shift to habitual behavior (i.e., policies375

of low complexity) may free up finite capacity, which we assume is fixed, so it is not all allocated376

to one task. Third, rational inattention subsumes an influential account relating tonic dopamine to377

average reward availability in a given context and response vigor (Niv et al., 2007). In other words,378

our derivation of rational inattention makes the same predictions as the average reward theory of379

dopamine, and extends it to precision.380

One conceptual leap we have made is to propose that the affective symptoms in mania and381

depression arise not from deficits in reward processing, but from aberrations in attention. We382

made this leap based on parsimony, as aberrations in attention allow us to explain not just affective383

symptoms, but numerous symptoms related to psychomotor state, learning, and decision making.384

An influential account of anhedonia, a common symptom in depression characterized by the inability385

to experience pleasure, holds that it may arise as a consequence of impaired reward sensitivity386

(reduction in the perception of reward magnitude; Huys et al., 2013). The authors note that387

reward insensitivity, under certain assumptions, is equivalent to over-exploration. This latter view388

is close to what we propose with rational inattention, which suggests that over-exploration, as a389

consequence of precision underestimation, may masquerade as reward insensitivity.390

We have argued that distractibility arises in mania, due to precision overestimation, and ADHD,391

due to reduced precision. How does rational inattention predict distractibility in both of these392

circumstances? At first pass, it would appear that only agents with reduced precision should be393

affected, since they do not have the sensory precision to focus on the task at hand. It is important394

to recognize that although distractibility arises in both mania and ADHD, they are observably395

distinct phenomena on clinical evaluation. What they share in common is an inability to follow a396

task through to completion. In mania, there is a sense that patients are intensely interested in their397

environments, focused not just on the task at hand but also task-irrelevant information. In ADHD,398

there is a sense of disinterest or ambivalence in the task at hand. In mania, therefore, distractibility399

arises from amplification of signal and noise, and patients with mania assign undue importance to400

inappropriate samples that impinge on their senses. In ADHD, distractibility arises from reduced401

attention to the signal. Phrased this way, rational inattention provides transdiagnostic insight into402
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distractibility, and makes it clear that it arises from distinct computational aberrations. Note that403

rational inattention does not predict distractibility if precision is increased but not miscalibrated404

(true and estimated precision are equal). It is only in the setting of precision overestimation that405

we predict distractibility.406

Although rational inattention and policy compression have broad implications for psychiatry, we407

do not want to leave readers with the impression that capacity limits offer complete explanations408

of psychopathology. How could they describe such a wide range of phenomena? In brief, they409

don’t, at least not in isolation. Our general belief is that the psychiatric phenomena we describe410

should not be seen as lying along a single dimension (capacity), but that disease states will require411

several dimensions to sufficiently define the relevant symptoms. For example, we propose that both412

depression and ADHD result from low capacity (under rational inattention), yet mood symptoms413

are nowhere to be found in the ADHD diagnostic criteria. We view this as an opportunity for414

computational psychiatry to identify the relevant symptom dimensions.415

In mania, for example, we provide some insight into elation, but mood effects also include416

irritability or anger1 (Cassidy et al., 1998b). Patients with depression may not exhibit any symp-417

toms of slowing, nor any measurable cognitive deficits (Hack et al., 2023). Even more extreme,418

symptoms of mania may coexist with symptoms of depression, as in mixed states, in which racing419

thoughts coexist with psychomotor slowing, or more generally any combination of mood, speed of420

thought, and psychomotor state (Kraepelin, 1921; Marneros, 2001). The predictions of rational421

inattention hold for optimal agents, in which reward, precision, and capacity are linked. Perhaps,422

in mixed states and other disease states, this assumption of optimality is violated. For example, an423

agent with an optimistic prior and reduced sensory precision may be characterized by what Emil424

Kraepelin called ‘manic stupor,’ characterized by elevated mood and psychomotor slowing.425

The notion that reward, precision, and capacity are linked for optimal agents has consequences426

for the relevant causal deficit. We highlighted particular deficits (e.g., precision miscalibration in427

mania) given our intuition for the relevant causal deficit. However, since the theory links multiple428

variables together, an aberration in any one could lead to the same symptoms. Neuroscience will429

play a valuable role in determining the relevant causal deficit. Rational inattention has recently430

gained traction in neuroscience (Mikhael et al., 2021; Grujic et al., 2022; Wu et al., 2022), and we431

are hopeful for deeper insights in the future.432

Both mania and depression can become severe enough that symptoms of psychosis emerge.433

Since, under rational inattention, mania and depression exist on opposite sides of the spectrum, this434

observation suggests that psychotic symptoms may emerge via an independent process. Likewise,435

mania or depression can be complicated by comorbid anxiety. In ADHD, our theories do not yet436

provide insight into the hyperactivity symptoms that are the more frequently observed consequences437

of the disorder. In addition, our theory predicts slowed time perception in ADHD, which is at odds438

with empirical data demonstrating time perception is more rapid and normalizes with treatment439

(Smith et al., 2002; Ptacek et al., 2019). This highlights either a limitation of our theory, a limitation440

of our understanding of ADHD, or - most likely - both.441

In schizophrenia, policy compression explains several negative symptoms, but it is does not442

exhaustively explain all negative symptoms, including asociality and amotivation. It also fails443

to describe anhedonia, although this may not be a failure of the theory, as there is a body of444

work advocating for intact hedonic drive in schizophrenia (Burbridge and Barch, 2007; Kring and445

Moran, 2008; Cohen and Minor, 2010; Dowd and Barch, 2010; Yee et al., 2010; Llerena et al., 2012).446

Neither policy compression nor rational inattention provides insight into the positive symptoms of447

psychosis, nor how antipsychotics function to reduce these symptoms.448

Amotivation is an interesting case study. Amotivation is also a feature of Parkinson’s disease,449

and is relieved by dopaminergic agonists, at least early in the disease (Pagonabarraga et al., 2015),450

which we argued increases capacity for more complex policies. Similarly, patients with chronic451

schizophrenia, who have reduced capacity, also typically suffer from amotivation. Thus, there is452

1Note, however, that such effects have been argued to represent a distinct subtype of mania (Cassidy et al., 1998a).
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suggestive, but incomplete, evidence for a link between capacity and amotivation.453

Our discussion of stimulants and antipsychotics is likewise incomplete. Although stimulants454

and mania have some overlap—stimulant intoxication can manifest as mania—clinical experience455

makes it obvious that antipsychotics do not phenocopy depression. Although dopamine blockade456

via antipsychotics is a mainstay of treatment for mania, stimulants are not generally recommended457

for depression. This is in large part because the neurobiology is far more complicated than we have458

laid out here, with psychopathology sculpted by the relevant brain structures, neuromodulatory459

systems, cell types, receptor subtypes and densities, and myriad other details. We have couched460

capacity limits in the language of dopamine, but we recognize the complexity of disease. Depres-461

sion, for example, is more commonly thought to involve dysfunction of the serotonergic system462

(Coppen, 1967; Meltzer, 1990; Owens and Nemeroff, 1994; Harmer et al., 2017), with recent work463

highlighting a role for extra-neuronal mechanisms (e.g., inflammation; Raison et al., 2006). Stimu-464

lants, as another example, involve the release of multiple neuromodulators, not just dopamine (our465

focus here). In short, a more complete picture will require a theory that encompasses multiple466

neuromodulatory systems.467

Conclusion468

Information-theoretic resource rationality provides a rich transdiagnostic language for describing469

psychopathology. We summarize our perspective in Table 1. Rationality, on this view, does not470

provide a single solution in phenotype space, but rather a Pareto frontier of optimal solutions. A471

wide range of psychopathology may be thought of not as suboptimal simply because it results in472

poorer task performance, but rather optimal performance under an illness-induced capacity limit.473

Our hope is that these frameworks provide rich ground for development of new theories, behavioral474

tasks, and for uncovering the neurobiological loci of mental illness.475

Appendix: Technical details476

This appendix summarizes theoretical results from past papers (Lai and Gershman, 2021; Mikhael477

et al., 2021; Gershman and Burke, 2022). We refer readers to those papers for further details.478

Rational inattention479

Suppose an agent is inferring a parameter µ about the world (this can be expected reward, a480

temporal interval, an object category, etc.) and it observes a sample x. Bayes’ rule prescribes a481

normative solution, which states that agents can combine what they observe, P (x|µ), with prior482

information, P (µ), to generate a posterior estimate of the parameter, P (µ|x):483

P (µ|x) ∝ P (x|µ)P (µ).

For analytical tractability, we will assume the sample distribution is Gaussian, x ∼ N (µ, λ−1), with484

mean µ and precision (inverse variance) λ. If we assume the prior is also Gaussian, µ ∼ N (µ0, λ
−1
0 ),485

then the posterior is also Gaussian with mean µ̂:486

µ̂ = µ0 +
λ

λ+ λ0
(x− µ0)

This equation takes the form of an error-driven update rule, where x − µ0 is the error and λ
λ+λ0

487

is the learning rate, determined by the relative precision between the likelihood and prior. Note488

that if the agent is inferring reward, then x − µ0 corresponds to the reward prediction error in489
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Phenomenon Mechanistic Hypothesis Symptoms Explained Symptoms Not Explained 

Mania 

Rational inattention  
 Precision 

miscalibration 
(overestimation)  

Euphoria  
Optimistic value estimates 
Increased attention/focus on outside world  
Psychomotor agitation  
Rapid speech  
Rapid passage of time  
Distractibility  

Dysphoria/irritability  
Mixed states 
Emergence of psychosis 

Depression 

Rational inattention 
 Precision 

miscalibration 
(underestimation) or 
precision decrease  

Decreased mood  
Inattentive to outside world/inwardly drawn  
Subjective “greyness” of experience  
Psychomotor slowing  
Slowed speech  
Slower passage of time  
Pessimistic value estimates 
Blunted response to feedback 

Psychomotor agitation  
Irritability  
Mixed states  
Emergence of psychosis  
Depression without cognitive 

changes   
Rational inattention 
 Decreased attentional 

incentive  

Decreased perception of control (learned 
helplessness)  

Policy compression 
 Reduced capacity  

Working memory deficits  
Perseveration  

Stimulants 
Rational inattention 
 Reduction in 

attentional cost  

Euphoria  
Increased attention/focus on outside world  
Psychomotor agitation  
Rapid speech  
Rapid passage of time  

Psychosis  

Antipsychotics Rational inattention 
 Reduced capacity 

Cognitive dulling / slowing 
Limited attention 
Difficulty perceiving world 
Exacerbation of negative symptoms 

Antipsychotic effects 

ADHD Rational inattention 
 Precision decrease  

Failure to give close attention 
Difficulty sustaining attention 
Mind seems elsewhere 
Careless mistakes (exploration) 
Dislike of mentally effortful tasks 
Distractibility 

Hyperactivity symptoms 
Faster perception of time 

Schizophrenia Policy compression 
 Reduced capacity  

Blunted affect 
Alogia 
Working memory deficits 

Positive symptoms 
Amotivation 
Asociality 

Parkinson’s 
disease  

Rational inattention 
 Reduced capacity  

Central tendency effect 
Reduced attention 
Slower speed of thinking 

Motor symptoms 
Sleep disorder  
Psychosis  Policy compression 

 Reduced capacity  

Memory problems 
Language difficulties 
 Word-finding difficulty 
 Naming errors 
 Difficulty with complex sentence structure 
 Dysarthria 
General problem solving and executive 

functioning difficulties 
Reduced response time w/ dopamine therapy 

Specific 
learning 
disorders 

Rational inattention 
 Imprecise sensory 

input  

Underreliance on imprecise sensory input and 
overreliance on other sensory inputs 

Practice improving precision of 
imprecise signals 

Reduced motivation to engage 
with imprecise signals 
(Matthew effect) 

Perseveration Policy compression 
 Reduced capacity  

Tendency to repeat actions across diagnostic 
entities 

Hierarchical nature of 
perseveration (e.g., 
repetition of actions in some 
disorders, repetition of action 
sets in others) 

Table 1: Summary of psychiatric phenomena explained by rational inattention and
policy complexity.
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reinforcement learning theory. Greater relative precision of the prior shifts the posterior estimate490

closer to the prior (what the agent assumed), whereas greater relative precision of the likelihood491

shifts the posterior estimate closer to the likelihood (what the agent perceived). Under rational492

inattention, agents control the likelihood precision λ. When, then, does it make sense to modulate493

precision?494

First, we must formalize what we mean by attention and how it increases information. The495

information transmission rate across sensory channels is496

I(µ;x) = H(µ)−H(µ|x),

where I(µ;x) is the mutual information between parameter µ and signal x, H(µ) is the entropy497

of the prior, and H(µ|x) is the entropy of the posterior. Intuitively, high mutual information498

means that observing the sample reduces uncertainty about the parameter estimate. Low mutual499

information means the prior and posterior distributions are similar and therefore observing the500

sample contributes little to uncertainty reduction. Mutual information formalizes what we mean501

by attention. For our Gaussian generative model, the mutual information is given by:502

I(µ;x) =
1

2
log

(
1 +

λ

λ0

)
.

Shannon’s noisy-channel coding theorem states that the minimum number of bits needed to commu-503

nicate µ without error across a noisy channel is on average equal to I(µ;x). A corollary, therefore, is504

that errorless communication is impossible if the agent’s capacity is less than I(µ;x), in which case505

there is a trade-off between the cost of attention and the cost of error. This trade-off is analyzed506

by rate distortion theory (Berger, 1971), which is equivalent to rational inattention (Denti et al.,507

2020).508

Let us assume agents receive reward inversely proportional to the squared error ϵ = (µ − µ̂)2,509

which should motivate agents to reduce their error. Intuitively, if λ is small, µ will migrate to510

the prior and cause a large error between the latent source and its estimate. As λ grows large,511

this error is reduced. For simplicity, let us assume that the reward agents receive, u(ϵ), is a512

monotonically decreasing and differentiable function of this error. Expanding the first-order Taylor513

series approximation around ϵ = 0 yields u(ϵ) ≈ u(0)− θϵ, where θ > 0 is the negative slope of u(ϵ)514

at ϵ = 0. We can interpret θ as an attentional incentive parameter to capture the idea that agents515

should be motivated to pay attention when reward is contingent on error. The expected reward is516

therefore U = E[u(ϵ)] ≈ u(0)− θE[ϵ].517

We can now write down the constrained optimization problem faced by agents518

λ∗ = argmax
λ

U − κI(µ;m)

where κ is the Lagrange multiplier. κ can be interpreted as the attentional cost, to formalize the519

notion that attention is effortful. κ can be thought of as an “exchange rate:” one unit of reward520

can be “bought” for κ units of information. Written this way, κ implicitly represents the capacity521

limit, with a large κ representing low capacity (many bits for one reward) and small κ representing522

high capacity (few bits for one reward).523

This equation formalizes the tradeoff between reward (U) and information: agents can increase524

λ to increase reward U by reducing their error ϵ, but doing so increases the information rate I(µ;m),525

which the agent must keep at or below capacity. Solving this constrained optimization problem526

yields:527

λ∗ = max

(
0,

2θ

κ
− λ0

)
.
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The optimal precision increases as 1) the attentional incentive, θ, increases, 2) the attentional cost,528

κ decreases, and 3) the prior precision, λ0, decreases.529

For the Gaussian generative model we described above, the optimal expected reward is:530

U∗ ≈ u(0)− θ

λ∗ + λ0
= u(0)− κ

2
.

Mikhael et al. (2021) used this equivalence to posit a rational inattention account of tonic dopamine.531

The authors propose a model in which tonic dopamine encodes average reward, U , and by the532

equivalence demonstrated above, also encodes posterior precision, λ∗ + λ0 and the information-533

reward exchange rate, κ (and implicitly, the capacity).534

Policy compression535

We model an agent that visits states, s, and takes actions, a, to earn reward. States are defined536

as the representation of information needed for reward prediction. Each state is visited with537

probability P (s) and an action is chosen according to a policy π(a|s), a probabilistic mapping538

from states to actions. We conceptualize the policy as a communication channel mapping states to539

actions. The minimum number of bits to achieve error-free communication of the state identity is540

given by the mutual information between states and actions:541

I(S;A) =
∑
s

P (s)
∑
a

π(a | s) log π(a | s)
P (a)

,

where P (a) =
∑

s P (s)π(a|s) is the marginal action distribution. We use the term policy complexity542

to refer to I(S;A). Intuitively, a policy with high complexity is highly state-dependent (e.g., each543

state maps uniquely to an action), whereas low complexity policies are more state independent.544

Similar to our derivation of rational inattention, we assume our agent is capacity limited, which545

induces a trade-off between policy complexity and reward. Agents must therefore compress the546

optimal policy if they lack the channel capacity to achieve error-free communication.547

We can therefore define a joint optimization problem where the agent seeks to maximize reward548

subject to a capacity constraint. We define the optimal policy2, π∗, as:549

π∗ = argmax
π

βV π − Iπ(S;A),

where V π is the expected reward under policy π:550

V π =
∑
s

P (s)
∑
a

π(a|s)Qπ(s, a).

For analytic tractability, we assume that an agent either learns or has direct access to the action-551

value function Q(s, a) which defines the expected reward after taking action a in state s. Note that552

we place the Lagrange multiplier, β, on V π instead of Iπ(S;A) since it permits a more straightfor-553

ward connection to reinforcement learning process models, as we will see.554

Solving this equation yields the optimal policy, π∗:555

π∗(a|s) ∝ exp[βQ(s, a) + logP ∗(a)],

2To facilitate direct comparison with rational inattention, we have left out Lagrange multipliers which ensure
proper normalization (i.e.,

∑
a π(a|s) = 1). See (Parush et al., 2011) for a full derivation.
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where P ∗(a) =
∑

s π
∗(a|s) is the optimal marginal action distribution. The optimal policy is the556

ubiquitous softmax function, used widely in the reinforcement learning literature; the Lagrange557

multiplier, β, plays the role of the inverse temperature parameter, governing the exploration-558

exploitation trade-off. Note that our derivation of the optimal policy made no appeal to ex-559

ploration/exploitation, which instead arose as a natural consequence of resource constraints. The560

precise value of β is a function of the policy complexity:561

β−1 =
dV π

dIπ(S;A)
.

At low policy complexity, where dV π

dIπ(S;A) is steep, the optimal β is close to 0. In this regime, Q-values562

have minimal impact on the optimal policy and the marginal action distribution, P ∗(a) dominates.563

In other words, at low policy complexity, state-independent actions dominate, an insight we have564

previously used to explain perseveration (Gershman, 2020).565

17



References566

Abramson, L. Y., Metalsky, G. I., and Alloy, L. B. (1989). Hopelessness depression: A theory-based567

subtype of depression. Psychological review, 96(2):358.568

Aleman, A., Lincoln, T. M., Bruggeman, R., Melle, I., Arends, J., Arango, C., and Knegtering, H.569

(2017). Treatment of negative symptoms: where do we stand, and where do we go? Schizophrenia570

research, 186:55–62.571

Alloy, L. B., Olino, T., Freed, R. D., and Nusslock, R. (2016). Role of reward sensitivity and572

processing in major depressive and bipolar spectrum disorders. Behavior therapy, 47(5):600–621.573

American Psychiatric Association (2022). Diagnostic and statistical manual of mental disorders,574

fifth edition, text revision (dsm-5-tr).575

Ascher-Svanum, H., Nyhuis, A. W., Stauffer, V., Kinon, B. J., Faries, D. E., Phillips, G. A., Schuh,576

K., Awad, A. G., Keefe, R., and Naber, D. (2010). Reasons for discontinuation and continuation of577

antipsychotics in the treatment of schizophrenia from patient and clinician perspectives. Current578

medical research and opinion, 26(10):2403–2410.579

Attneave, F. (1954). Some informational aspects of visual perception. Psychological review,580

61(3):183.581

Baldessarini, R. J., Perry, R., and Pike, J. (2008). Factors associated with treatment nonadherence582

among us bipolar disorder patients. Human Psychopharmacology: Clinical and Experimental,583

23(2):95–105.584

Balleine, B. W. and O’Doherty, J. P. (2010). Human and rodent homologies in action control:585

corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology,586

35(1):48–69.587

Bari, B. A. and Gershman, S. J. (2023). Undermatching is a consequence of policy compression.588

Journal of Neuroscience, 43(3):447–457.589

Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R.,590
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