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Insight into psychiatric disease and development of therapeutics relies on behavioral tasks that study similar
cognitive constructs in multiple species. The reversal learning task is one popular paradigm that probes
flexible behavior, aberrations of which are thought to be important in a number of disease states. Despite
widespread use, there is a need for a high-throughput primate model that can bridge the genetic, anatomic,
and behavioral gap between rodents and humans. Here, we trained squirrel monkeys, a promising preclinical
model, on an image-guided deterministic reversal learning task. We found that squirrel monkeys exhibited
two key hallmarks of behavior found in other species: integration of reward history over many trials and a
side-specific bias. We adapted a reinforcement learning model and demonstrated that it could simulate
squirrel monkey-like behavior, capture training-related trajectories, and provide insight into the strategies
animals employed. These results validate squirrel monkeys as a model in which to study behavioral
flexibility.
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Psychiatry is in need of fundamental insights both so we may
understand the psychological and neural basis of disease and so we
can develop novel therapeutics. Comparative neuroscience is one
approach that has historically led to the discovery of safe and
effective pharmaceuticals (Markou et al., 2009). One common
procedure is to combine animal models of psychiatric disease
with commonly used behavioral tasks, such as the forced swim
test or elevated plus maze. Compounds can then be tested for their
ability to ameliorate modeled symptoms (Crawley, 2008; Dawson&
Tricklebank, 1995; Flint & Shifman, 2008; Kaiser & Feng, 2015;
Nestler et al., 2002). While this approach has been fruitful, it has
failed to fundamentally change our understanding about disease or

lead to the discovery of truly novel therapeutics (Fenton et al., 2003;
Pangalos et al., 2007). This is partly because preclinical behavioral
models represent a major bottleneck in drug development (Tallman,
1999). Since psychiatric diseases affect higher order cognitive
processes, designing tasks that translate drug effects from animal
models to humans is nontrivial. The standard library of tasks was
designed to probe intuitive ideas about observable symptoms, not
quantitative theories of cognitive processes.

A promising approach is to design behavioral tasks that probe the
same psychological phenomena across species (Pike et al., 2021).
These tasks may use different stimuli and motor responses, but
attempt to isolate the same neurocomputational mechanisms.
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Theories about the relevant cognitive processes are used to form and
test explicit hypotheses, in the form of models, about behavioral
strategies (Daw, 2011; Heathcote et al., 2015; Wilson & Collins,
2019). From the perspective of computational psychiatry, these
models in turn allow us to understand and quantify aberrant
information processing in disease (Aylward et al., 2019;
Gershman & Lai, 2021; Huys et al., 2016; Mason et al., 2017;
Radulescu & Niv, 2019; Redish, 2004), as well as effects of therapy
(Frank et al., 2007; Michely et al., 2020; Paulus et al., 2016).
Reversal learning is one popular task that is amenable to theory-

based computational modeling (Behrens et al., 2007; Soltani &
Izquierdo, 2019). In common variants of this task, subjects are
presented with a choice between two stimuli, one associated with a
high-value outcome (e.g., high probability or large volume of
reward) and the other associated with a low-value outcome. Subjects
begin the task with no knowledge about which stimulus is the better
option. On each trial, subjects select one stimulus, receive the
associated outcome, and repeat this process. Through trial and
error, subjects learn the values of each stimulus. After some
time, the two stimuli reverse in association (hence, reversal learn-
ing), so that the previously low-value stimulus becomes the high-
value stimulus and vice versa. Importantly, these reversals are not
cued, necessitating continual trial-by-trial learning to maximize
reward. This task design is thought to engage mechanisms of
flexible and rapid learning, impairments of which are implicated
in a wide range of psychiatric disease (Aylward et al., 2019;
Brigman et al., 2009; Huys et al., 2013; Izquierdo & Jentsch,
2012; Leeson et al., 2009; Remijnse et al., 2006; Swainson et al.,
2000), including addiction (Ersche et al., 2011; Porter et al., 2011).
Although behavior on these tasks is typically reported using

simple summary statistics (average performance, trials to reach a
criterion, etc.), richer insight can be gleaned with reinforcement
learning modeling. Reinforcement learning is a framework that
formalizes learning from environmental feedback (Sutton &
Barto, 1998) and has provided a number of tractable algorithms
that have delineated numerous structure–function relationships in
the nervous system (Bari et al., 2019; Grossman et al., 2020;
O’Doherty et al., 2004; Ottenheimer et al., 2020; Samejima
et al., 2005; Schultz et al., 1997). Among the most commonly
applied algorithms are the class that iteratively learn stimulus values
over many trials and choose based on the relative values of the
stimuli. Reinforcement learning models of reversal learning have
been used to explain behavioral data in species as diverse as rodents
(Harris et al., 2020; Metha et al., 2020), macaques (Costa et al.,
2016), and humans (Kanen et al., 2019). Importantly, reinforcement
learning models are generative models—that is, they are capable of
simulating behavior, a premise which we capitalize on in this
manuscript.
Here, we trained squirrel monkeys on a deterministic image-

based reversal learning task. Squirrel monkeys are New World
primates widely used in biomedical research, primarily due to their
small size (<1 kg), ease of handling, and adaptation to laboratory
conditions (Abee, 2000). From the perspective of comparative
neuroscience, squirrel monkeys help span the massive genetic,
anatomical, and behavioral gap between rodents and humans
(Boinski, 1999). They may also prove to be a useful preclinical
model for development of optogenetic-based interventions (O’Shea
et al., 2018).

Our objective was to determine if squirrel monkeys solve reversal
learning tasks using a strategy compatible with trial-by-trial rein-
forcement learning and to isolate parameters of cognitive flexibility
to employ in future studies. First, we demonstrate that squirrel
monkeys do not adopt the optimal win–stay/lose–shift strategy
required to optimize reward accumulation in this task but rather
integrate reward over many trials. We fit a number of reinforcement
learning models and found that a standard Rescorla–Wagner model
fit best, similar to reversal learning models in other species, includ-
ing rhesus macaques (Costa et al., 2016). We show that this model
simulates realistic behavior, providing a convincing platform for
making inferences about behavioral strategy. Finally, we use the
recovered parameters to define how the behavioral strategy develops
with training. We primarily analyze data at the monkey level to
allow one to trace an individual monkey throughout the manuscript
and observe how well the reinforcement learning models capture
monkey-to-monkey variability, since accounting for this variability
is critical for future studies.

Method

Subjects

A total of 13 (9 of which met behavioral criteria) adult male
squirrel monkeys (Saimiri sciureus) with less than 1 year of training
on behavioral touchscreen tasks were housed individually under
controlled temperature and humidity on a 12/12-hr light–dark cycle
(lights on from 0700 to 1900 hr). Monkeys weighed 867–1,113 g
(M: 965 g) and were maintained on a diet of primate chow (LabDiet
High Protein Monkey Biscuits; PMI Feeds, St. Louis, MO) with
continuous access to water in the home chamber. Environmental
enrichment, including fresh fruits and vegetables, was provided on a
daily basis. The maintenance and experimental use of animals was
carried out in accordance with the 2011 Guide for Care and Use of
Laboratory Animals. All experimental protocols were approved by
the Animal Care and Use Committee of the National Institute on
Drug Abuse Intramural Research Program.

Apparatus

Experiments were conducted in sound-attenuating chambers
equipped with a 15″ touchscreen (Elo TouchSystems, Menlo
Park, CA), mounted in a panel 14.25″ from the floor of the chamber.
Centered 1.5″ below the touchscreen and extending 2″ into the
chamber was a well into which measured volumes of 30% sweet-
ened condensed milk (Eagle Foods, Richfield, OH) could be deliv-
ered through a line connected to a syringe pump (Harvard
Apparatus, South Natick, MA) located outside the chamber. Mon-
keys were seated in custom-built acrylic chairs facing the touchsc-
reen panel. A computer and software program (E-Prime Professional
3.0; Psychology Software Tools, Inc., Sharpsburg, PA) controlled
the parameters of the experimental program and data collection.

Behavioral Task and Training

Naïve squirrel monkeys were single housed and handled using
chain and collar methods (Kelleher et al., 1963). Animals were
acclimated to custom designed and fabricated behavioral chairs in
sound-attenuating chambers in which they were restrained only at
the waist, leaving their upper bodies unrestrained. Monkeys were
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first trained to touch a yellow square stimulus presented at the center
of the touchscreen for delivery of a 30% sweetened condensed milk
dilution. A correct response resulted in delivery of a fixed volume of
0.15 mL/kg of milk and initiated an intertrial interval (ITI) of 2 s
during which responses on the screen had no programmed conse-
quence. As animals learned to respond precisely, the ITI was
increased and the stimulus was gradually reduced in size and
presented at random locations on the screen. The time required
for this familiarization training was 12 weeks + 0.6 (standard error
of the mean; SEM). Prior to introducing the reversal task, monkeys
were then trained on a task in which they chose between different
quantities of milk (0.075–0.3 mL/kg) represented by unique stimuli
on the touchscreen. Monkeys registered a choice by physically
touching the display for 100 ms; this was paired with a tone and
allocation of the associated reward into the well below the touchsc-
reen. A house light and speakers inside the experimental chambers
provided illumination and white noise. Training sessions were
generally carried out 5 days a week (Monday–Friday) and lasted
30–60 min. Animals performed this task for 18 + 0.2 weeks. This
duration was not required for learning the task, but because it
provided continued handling during a delay necessitated by events
external to this study.
Following the above training and choice tasks, monkeys con-

ducted an image-based deterministic reversal learning task. These
sessions began with a Discrimination block, in which monkeys were
presented with two novel images selected randomly from a large
library of images. One image was associated with a big reward (large
volume of milk, the “correct” choice) and the other image was
associated with a small reward (small volume of milk, the “incor-
rect” choice). Monkeys registered a choice by physically touching
one of the visual stimuli on the display and received the associated
reward from a reward port. Following an 8–12 s ITI, the images were
presented again on the next trial, with left/right positions random-
ized between trials. Monkeys made choices until they reached a
performance threshold of 80% correct in the past 15 trials, after a
minimum 20 trial block length. Once this threshold was reached, a
Reversal block was initiated, in which the two image associations
reversed so the image previously associated with big reward was
now associated with small reward, and vice versa for the other
image. Monkeys again performed until they reached the perfor-
mance threshold, at which point a new Discrimination block was
initiated and two new images were randomly sampled from the
library. Monkeys typically performed for 150 trials, although some
sessions were shorter due to reduced motivation. The large reward
(0.13–0.24 mL/kg) was four times larger than the small reward
(0.03–0.06 mL/kg).

Data Analysis

All 13 monkeys completed at least 60 sessions and at least one
block per session on average. Monkeys that reached an average
performance threshold of 54% across all reward blocks and all
sessions were included, yielding nine monkeys in the final data set.
Monkeys performed an average of 121 sessions (range 66–135).
All choices that yielded big (small) reward were labeled as correct

(incorrect). Performance was defined as the fraction of correct
choices in a session. To generate reward history regressions, we
arbitrarily coded one image as “Image 0” and the other image as
“Image 1” for each set of presented images and fit the following

random effects logistic regression

log

�
Pðc1ðtÞÞ

1 − Pðc1ðtÞÞ
�

=
X15
i=1

βri ðR1ðt − iÞ − R0ðt − iÞÞ

+
X15
i=1

βSi ðSðt − iÞÞ + βint,

where c1(t) = 1 for a choice to “Image 1” and 0 for a choice to
“Image 0.” R(t) = 1 if big reward was delivered for that image on
trial t and 0 otherwise. S(t)= 1 if the animal chose the rightward side
on that trial and 0 if the leftward side was chosen. We included
monkey-level and session-level (nested within monkey) random
effects for the intercept.

We generated error bars for performance within blocks (Figures 2
D and 4D) by computing bootstrapped 95% confidence intervals
from 1,000 bootstrap samples of the mean.

In generating image-based win–stay/lose–shift and mutual infor-
mation metrics, we excluded the first trial of each Discrimination
block, as new images were presented on these trials. The mutual
information between stay/shift (to image) and reward on the previ-
ous trial was calculated as

IðR,SÞ = HðSÞ − HðSjRÞ
HðSÞ = −

X
s∈S

PðsÞlog2ðPðsÞÞ

= −ðPðswitchÞlog2ðPðswitchÞÞ + PðstayÞlog2ðPðstayÞÞÞ
HðSjRÞ =

X
r∈R

HðSjrÞPðrÞ

= −ðPðswitchjwinÞlog2ðPðswitchjwinÞÞ
+ PðstayjwinÞlog2ðPðstayjwinÞÞÞPðwinÞ
− ðPðswitchjlossÞlog2ðPðswitchjlossÞÞ
+ PðstayjloseÞlog2ðPðstayjloseÞÞÞPðloseÞ,

where I(R, S) is the mutual information, S = {switch, stay} on the
current trial, and R = {win, lose} on the previous trial.

Side bias was defined as 2 · j Nr
Nr+Nl

− 0.5j, where Nr and Nl are the
total rightward and leftward choices in a session, respectively. Side
bias = 0 if there are an equal number of leftward/rightward choices
and 1 if all choices are exclusively to one side.

All regressions relating behavioral metrics to sessions number
were random effects linear regressions with monkey-level random
effects for slope and intercept.

Reinforcement Learning Models

We developed a number of reinforcement learning models based
on the Rescora–Wagner model. Our chosen model took the follow-
ing form for updating image values

δðtÞ = RðtÞ − VchosenðtÞ
V chosenðt + 1Þ = VchosenðtÞ + α · δðtÞ

Vunchosenðt + 1Þ = VunchosenðtÞ,

where values were initialized with Vi = 0 at the beginning of each
Discrimination block. In this model, the chosen image’s value is
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updated based on the discrepancy between prediction and reward
(reward prediction error, δ(t)). The unchosen image’s value remains
unchanged. Image values were fed into a softmax function to
generate choices according to

PðcðtÞ = rightwardÞ = 1

1 + e−βðV rightward−V leftwardÞ−bias

PðcðtÞ = leftwardÞ = 1 − PðcðtÞ = rightwardÞ:

We fit a number of model variants. First, we considered a set of
noise models testing whether behavior could be explained as
random, biased, perseverative (1-trial-back choice autocorrelation),
or biased + perseverative. Within the space of Rescorla–Wagner
models, we considered models with all possible combinations of
the following: one learning rate, two learning rates (separate
learning of positive and negative reward prediction errors), for-
getting of unchosen image values to 0, rewards coded as [0.25 1]
(since the small reward was 25% the volume of the large reward;
only for models with forgetting), and learning of action values
(i.e., learning values for leftward/rightward actions). Each of these
models also included permutations for nuisance parameters (none,
side bias, perseveration, or side bias + perseveration). We addi-
tionally considered a set of models that augmented each model to
allow for a mixture of image-based win–stay/lose–shift and rein-
forcement learning. We considered one final model (a variant of our

chosen model) that explicitly accounted for a reversal mechanism.
In this model, reward prediction errors symmetrically updated
image values—if one image value was increased by δ(t), the other
image value was decreased by δ(t), while bounding image values
by [0 1]. In all models, reward values were coded as 0 and 1 for
small reward and big reward, respectively (except for the variant
where they were coded as [0.25 1]). In total, we considered 105
model variants. Variations of these models and justifications for
these parameters have been reported previously (Bari et al., 2019;
Dorfman et al., 2019; Grossman et al., 2020; Kanen et al., 2019;
Katahira, 2015).

We developed a metric, the maximal trial-by-trial change in
P(choice), to capture the interaction between the learning rate, α,
and the inverse temperature, β (Figure 6F, J and Figure S9C). For a
given α and β, we assumed the largest reward prediction error, δ(t)=
1. This yields Vchosen(t + 1) = Vchosen(t) + α·δ(t), which can be
simplified as Vchosen(t + 1) − Vchosen(t) = α. In other words, the
value function is increased by α in response to the largest possible
reward prediction error in this task. We then calculated the change in
P(choice) around the inflection point of the softmax function [at
P(choice) = 0.5] since the slope is steepest at this point. This yields
the maximum trial-by-trial change in P(choice).

ΔPðchoiceÞ = 1

1 + e−β·α=2
−

1

1 + e−β·−α=2
:
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Figure 1
Reversal Learning Task Design

Trials

Chosen image

Block
change

Big reward image

(A)

(C)

Choice

Trial 1 Trial 2

Choice

Big reward

Small reward

Big reward

Small reward

Big reward

Small reward

Big reward

Small reward

Block 1
(Discrimination)

Block 2
(Reversal)

Block 3
(Discrimination)

Block 4
(Reversal)

(B)

New image set

Note. (A) Squirrel monkeys chose between two images presented on the left and right halves of a
touchscreen. A choice was registered by physically touching either visual stimulus on the display.
One imagewas deterministically associatedwith bigmilk reward, and the other imagewas associated
with small milk reward. Image locations were randomly displayed on the left and right halves of the
screen on separate trials. (B) Monkeys performed sequences of Discrimination and Reversal blocks.
At the beginning of eachDiscrimination block, two new imageswere randomly sampled from a large
library of images and each image was randomly assigned to big or small reward. At the beginning of
each Reversal block, the two images switched reward contingencies. Block transitions were triggered
by a threshold of 80%correct responses (response to the big reward image) in the past 15 trials, after a
minimum of 20 trials. These transitions were unsignaled, requiring the animal to use reward feedback
to guide decisions. (C) Example choice behavior demonstrates the flexibility of behavior at
Discrimination → Reversal and Reversal → Discrimination block transitions.
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Figure 2
Behavioral Features Demonstrate Reward Sensitivity and Side Bias
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Note. (A) Performance was significantly better than chance (50%, dashed line). (B) Logistic regression coefficients for choice as a function of reward history
and side history. (C) Performance at block transitions for all blocks, and separately for Discrimination and Reversal blocks. Relative to Reversal blocks,
monkeys were faster to improve performance during new Discrimination blocks. The increase in performance prior to block transitions is because transitions
were triggered by good performance. (D) Performance was better in Discrimination blocks relative to Reversal blocks. (E) Image-based win–stay and lose–shift
were both greater than 0.5, demonstrating that animals learned from both wins (big reward) and losses (small reward) to guide decisions. (F) The average win–
stay+ lose–shift, which can be taken as a proxy for the strength of reward-guided behavior, was greater than 0.5 (dashed line). Values close to 0.5 are consistent
with reward-insensitive behavior and values of 1.0 are consistent with a perfect win–stay lose–shift strategy. (G) The mutual information between stay/switch
and reward on the previous trial. Mutual information quantifies how much better we can predict the strategy (stay vs. switch) if we know the reward received on
the previous trial (dashed line is from simulated random behavior). (H) Side-based win–stay and lose–shift highlight a side bias, where animals largely stay. (I)
Side bias, which is 1 if choices are exclusively to one side and 0 if they are uniformly split, was widely distributed (dashed line is from simulated non-side-biased
behavior). Colors denote individual monkeys and are consistent between figures. In panels A, E–I, each data point is the average for one monkey, across all
sessions and blocks. Panels B–D are analysis of all the data, pooled across all monkeys, sessions, and blocks.
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Model Fitting

Models were fit to individual session data with maximum likeli-
hood estimation, with 10 starting points to avoid finding local
minima. To determine which models fit the data most parsimoni-
ously, we used the Bayesian information criterion, which penalizes
models with additional parameters. The above reinforcement learn-
ing model fit best for the most monkeys (Table S1).
This model is notable for several reasons. First, none of the

noise models fit best for the monkeys included in this data set.
Because Bayesian information criterion, relative to other metrics
(like Akaike information criterion), favors simpler models, this
suggests that Rescorla–Wagner-like learning is a key feature of
behavior. Second, although reinforcement learning models with
two learning rates are often fit to animal and human data, we found
that none of the models with two learning rates were selected.
Third, none of the win–stay/lose–shift models provided better fits
than the complementary model variants without win–stay/lose–shift.
This includes four win–stay/lose–shift models that did not include
Rescorla–Wagner-style learning (a mixture of the four noise models+
win–stay/lose–shift).

Model Recovery

For the best model, we took the parameter estimates for each
session and generated fictive data according to the same model. We
then fit all 105 models to this synthetic data set and found that the
true generative model was selected for nine of the nine simulated

monkeys. This shows that our model recovery procedure could
indeed recover our chosen model.

We also conducted a parameter recovery exercise with these
models and found that the difference between actual and recovered
parameters had a mode of 0 for all three parameters.

Hierarchical Bayesian Model Fitting

To obtain partially pooled parameter estimates (i.e., less noisy
estimates, especially since α and β tend to compensate for one
another (Ballard & McClure, 2019; Daw, 2011), we refit the best
reinforcement learning model using a hierarchical Bayesian frame-
work. We used MATLAB (Mathworks), the probabilistic program-
ing language Stan (https://mc-stan.org), and the MATLAB
interface, MatlabStan (https://mc-stan.org/users/interfaces/matlab-
stan). We constructed hierarchical models separately for each
monkey, with monkey-level parameters to govern session-level
parameters for learning. Priors over monkey-level parameters,
from which session-level means were drawn, were set as

α ∼ Betað1.2,1.2Þ
β ∼ Gammað4.82,0.88Þ
b ∼ Normalð0,1Þ,

where the priors for α and βwere taken from the literature (den Ouden
et al., 2013; Gershman, 2016; Kanen et al., 2019). The gamma
distribution was parameterized in terms of shape and scale. For all
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Figure 3
Relationship Between Performance, Reward Sensitivity, Side Bias, and Training

Performance (fraction correct)

A
ve

ra
ge

 w
in

-s
ta

y 
+

 
lo

se
-s

hi
ft 

(im
ag

e)

0.00

0.05

0.10

0.15

M
ut

ua
l i

nf
or

m
at

io
n 

of
st

ay
/s

hi
ft 

(t
o 

im
ag

e)
an

d 
re

w
ar

d 
(b

its
)

Performance (fraction correct)

0.0

0.5

1.0

S
id

e 
bi

as

Performance (fraction correct)

(A) (C)(B)

0 50 100 150
Session

0.0

0.5

1.0

P
er

fo
rm

an
ce

 (
fr

ac
tio

n 
co

rr
ec

t)

0 50 100 150
Session

0.0

0.5

1.0

A
ve

ra
ge

 w
in

-s
ta

y 
+

 
lo

se
-s

hi
ft 

(im
ag

e)

0.0

0.1

0.2

0.3

M
ut

ua
l i

nf
or

m
at

io
n 

of
st

ay
/s

hi
ft 

(t
o 

im
ag

e)
an

d 
re

w
ar

d 
(b

its
0 50 100 150

Session

0.0

0.5

1.0

S
id

e 
bi

as

0 50 100 150
Session

(F)(D)

0.50

0.55

0.60

0.65

0.70

0.75

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

(E) (G)

Actual Behavior
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monkey-level variances, we used Cauchy+(0, 1). For session-level α
and β, we again used beta and gamma distributions, reparameterized
in terms of mean and variance with parameters drawn from monkey-
level distributions. Session-level bias was normally distributed, with
mean and variance drawn frommonkey-level distributions. Parameter
estimates in Figure 6A–G and Figure S7 are posteriors over monkey-
level means. Parameter values reported in Figure 6H–K are themeans
of the session-level posteriors.

Results

Reward History and Side Bias Inform Strategy

We developed a deterministic reversal learning task in which
chaired squirrel monkeys chose between two simultaneously pre-
sented images for delivery of milk reward. Images were presented in
blocks of trials, and in each block, one image was associated with
big reward and the other was associated with small reward. On each
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Figure 4
Simulated Behavioral Features Demonstrate Squirrel Monkey-Like Reward Sensitivity and Side Bias
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trial, monkeys were presented with two images, each on the left/right
half of a touchscreen and physically touching an image yielded
reward (Figure 1A). Selecting the big reward image (which we call
the correct choice) for 80% of the past 15 trials triggered a block
transition, uncued to the monkey. Blocks switched between Dis-
crimination blocks and Reversal blocks (Figure 1B). At the begin-
ning of each Discrimination block, two images were randomly
selected from a large library of images and assigned to big/small
reward. At the beginning of each Reversal block, the two images
swapped reward contingencies. On average, sessions lasted for 146
(SD 14) trials and monkeys completed 4.8 (SD 1.9) blocks.
Assuming animals are sensitive to differences in reward volume

and seek to maximize reward, the optimal strategy in this task is an
image-based win–stay/lose–shift policy: select the same image if it
yielded big reward on the previous trial, switch if it yielded small
reward. After training, monkeys reliably switched their choices at
block transitions, when contingencies switched (Figure 1C and
Figure S4A). However, although animals performed significantly
better than chance (Wilcoxon signed-rank test, p < .01), they
performed worse than win–stay/lose–shift, an optimal strategy
that would yield the large reward on ∼96% of trials (Figure 2A).
To understand how monkeys solved this task, we fit logistic
regression models to predict choice as a function of reward history
and side history. Unlike the optimal policy, which maintains a
memory of reward on just the most recent trial, monkeys maintained
a recency-weighted memory of reward history up to 10 trials in the
past to inform choices (Figure 2B). We also found that monkeys
were faster to transition from Reversal → Discrimination blocks

than fromDiscrimination→Reversal blocks (Figure 2C, D). A two-
way analysis of variance (ANOVA; Block Type × Trials) was
performed separately for trials before and after the block transition.
Before the block transition, there was no significant effect of Block
Type (F1, 96 = 1.32, p = .25). After the transition, this effect
became significant (F1, 240 = 270.13, p < .0001). Performance in
Discrimination blocks was better than in Reversal blocks (M [95%
CI] 0.685 [0.679, 0.690] fraction correct in Discrimination blocks,
0.576 [0.568, 0.583] fraction correct in Reversal blocks). This
asymmetry in block performance is consistent with the idea that
Reversal blocks, but not Discrimination blocks, require unlearning
of previously learned associations in addition to learning new
associations.

Following reward, monkeys can implement two distinctive strat-
egies: choose to repeat choices to the same image, regardless of side
(image-based win–stay) or repeat choices to the same side, regard-
less of image (side-based win–stay). To better define monkeys’
behavioral strategy, we first quantified win–stay and lose–shift
tendencies in image-based coordinates (Figure 2E). Each point
indicates the fraction of trials in which monkeys stayed after
receiving big reward (x-axis) and shifted after receiving the small
reward (y-axis). Plotted this way, points in the top right and bottom
left quadrants indicate reward-sensitive behavior (win–stay/lose–
shift and win–shift/lose–stay, respectively) and points in the top left
and bottom right quadrants indicate reward-insensitive behavior
(shift and stay, respectively, regardless of reward). All monkeys
were in the top right quadrant, indicating that they were demon-
strating both win–stay and lose–shift behavior following outcomes
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Figure 5
Simulations Show Similar Relationships Between Simulated Performance, Reward Sensitivity, Side Bias, and Training
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(Wilcoxon signed-rank test, p < .01 for each). We quantified
reward sensitivity by computing the average win–stay + lose–
shift per animal. This metric is 1.0 for perfect win–stay/lose–shift
behavior, 0.5 for reward-insensitive behavior, and intermediate for
reward-sensitive behavior. Consistent with prior analyses, animals
demonstrated reward-sensitive behavior (Figure 2F; Wilcoxon
signed-rank test, p < .01). However, one shortcoming of this
metric is it places equal emphasis on win–stay and lose–shift.
Because P(lose) is fairly low in this task, behavior in response to
losses does not impact overall performance as strongly as response
to reward. To work around this pitfall, we computed the mutual
information between reward on the previous trial and stay/switch
behavior on the current trial, as it accounts for the base rate of
P(lose), Figure 2G. Perfect win–stay/lose–shift behavior results in
1 bit of information and reward-insensitive behavior results in 0 bits.
Consistent with the average win–stay + lose–shift analysis, monkeys
demonstrated reward-sensitive behavior (Wilcoxon signed-rank
test, p < .01).
One notable behavioral suboptimality we observed was a bias

toward a particular side (a rightward side bias can be seen in Figure
S4A; Bari et al., 2019; Friedman et al., 2017). To better understand
this side bias, we quantified win–stay/lose–shift in side-based

coordinates (Figure 2H). Most monkeys fell in the bottom right
quadrant, consistent with a reward-insensitive tendency to favor a
particular side (win–stay >0.5 and lose–switch <0.5, Wilcoxon
signed-rank test, p < .01 for each). We quantified side bias with a
side bias metric (0 for uniformly split choices, 1 for exclusive choice
of one side) and observed a wide distribution, indicating an average
tendency for side-biased behavior (Figure 2I;Wilcoxon signed-rank
test, p < .01). Individual session data showed a similar trend
(Figure S1).

Taken together, these results argue that monkeys solve this task
by integrating reward over many trials to inform choices, and that
this strategy is corrupted by a side bias.

Squirrel Monkeys Develop Reward Sensitivity and
Reduce Side Bias With Training

The wide range of performance allowed us to relate behavioral
performance to the behavioral metrics we defined. First, we found
that the average win–stay + lose–shift increased with better perfor-
mance (linear slope 0.82, t7 = 28.23, p < .0001), consistent with
the optimality of image-based win–stay/lose–shift (Figure 3A).
Similarly, the mutual information between reward and stay/shift
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Figure 6
Relationship Between Model Parameters, Simulated Performance, and Training
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increased with performance (Figure 3B; linear slope 0.50,
t7 = 19.54, p < .0001). Next, we focused on the side bias (Figure 3
C). We found that for poor performance, side bias was generally
high and decreased with improved performance (mean: linear slope
−1.98, t7 = −3.17, p = .016).
The large number of sessions per monkey additionally allowed us

to quantify the effects of training. First, we found that performance
increased with the number of sessions (Figure 3D; linear slope
1.3 × 10−3, t1091 = 7.85, p < .0001). Similarly, we found that
mean block lengths decreased with training (Figure S2; linear slope
−6.8 × 10−2, t1064 = −4.72, p < .0001). This was partly due to
increased reward sensitivity to images. The average win–stay +
lose–shift increased with training (Figure 3E; linear slope
1.1 × 10−3, t1091 = 11.04, p < .0001).
Similarly, the mutual information between reward and stay/

switch increased (Figure 3F; linear slope 4.86 × 10−4,
t1091 = 5.58, p < .0001). The improvement in performance was
also partly due to a decrease in side bias. The side bias decreased
with training (Figure 3G; linear slope −1.5 × 10−3, t1091 = −8.51,
p < .0001). Individual session data showed a similar trend (Figure
S3). In summary, squirrel monkeys improve with training, partly
due to increased reward sensitivity to images, and partly due to a
decrease in side bias.

Reinforcement Learning Modeling Captures Key
Features of Behavior

Since we found that squirrel monkeys integrated rewards over
many trials, we adapted the Rescorla–Wagner model, a commonly
used model in reinforcement learning (Rescorla, 1972). This model
maintains a running estimate of the values of images and chooses
based on the relative values of the presented images. Image values
are learned by recency-weighted reward history, which allows the
model to adapt behavior flexibly when reward contingencies
change. We considered a number of model variants: equivalent
versus differential learning from better-than-expected and worse-
than-expected outcomes, forgetting of unchosen image values,
learning the values of actions (e.g., if leftward choices were recently
rewarded, then increase probability of leftward choices), mixtures of
reinforcement learning and win–stay/lose–shift strategies, and nui-
sance parameters, like side bias and choice autocorrelation. We fit
individual sessions using maximum likelihood estimation and
selected the best model using Bayesian information criteria, which
selects the best fit model while penalizing overly complex models.
The best model was among the simplest—learning of image values
with equivalent learning from better/worse outcomes and a side bias
mechanism (Table S1). Importantly, this model was strongly pre-
ferred over noise models (which include nuisance parameters but no
learning of image values), suggesting that learning image values was
consistent with real behavior. Armed with a simple and tractable
model, we sought to determine how well it described real behavior.
First, we observed that the model fit behavioral data well (data not

shown). However, model fits run the risk of overfitting to data
(Palminteri et al., 2017). A stronger approach is to take advantage of
the generative modeling framework: simulate fictive data and assess
how well simulated data matches real behavioral data. Visually, we
observed a qualitative correspondence between raw behavior and
simulations (Figure S4B). Across all simulated monkeys, we
observed that simulated behavior performed better than chance,

similar to real behavior (Figure 4A; Wilcoxon signed-rank test,
p < .01). Simulated behavior exhibited a dependence on reward
history for many trials into the past (Figure 4B). Like real squirrel
monkeys, simulated monkeys were faster to transition to new
Discrimination blocks than to new Reversal blocks (Figure 4C).
There was no significant effect of Block Type prior to block
transitions (F1, 96 = 0.50, p = .48), which became significant after
the transition (F1, 240 = 274.78, p < .0001). Performance for Dis-
crimination and Reversal blocks were comparable to real behavior
(Figure 4D; M [95% CI], Discrimination: 0.685 [0.679, 0.691],
Reversal: 0.576 [0.568, 0.584]).

Simulated behavior exhibited features of reward sensitivity to
images, with image-based win–stay and lose–shift both >0.5
(Figure 4E; Wilcoxon signed-rank test, p < .01 for each). The
average win–stay+ lose–shift was>0.5, indicating reward-sensitive
behavior (Wilcoxon signed-rank test, p < .01) and mutual informa-
tion between reward and stay/switch was similarly skewed away
from 0 bits, indicating reward sensitivity (Wilcoxon signed-rank
test, p < .01; Figure 4F, G). Simulated behavior also exhibited
suboptimal features of side bias (Figure 4H; win–stay >0.5 and
lose–switch <0.5, p < .01 for each). Side bias was similarly wide
(Figure 4I). On a monkey-by-monkey basis, there was a strong
correspondence between each of these metrics for real and simulated
data (Figure S5).

We addressed the relationship between simulated behavioral
metrics and performance. We observed a strong linear dependence
between performance and average win–stay + lose–shift (Figure 5
A; linear slope 0.91, t7 = 47.85, p < .0001). There was likewise a
strong association between performance and mutual information
between reward and stay/switch (Figure 5B; linear slope 0.57,
t7 = 23.63, p < .0001). Side bias decreased with performance
(Figure 5C; linear slope −1.99, t7 = −3.06, p = .18).

We also addressed the relationship between behavioral metrics
and training. Simulated behavior exhibited an increase in perfor-
mance with training (Figure 5D; linear slope 1.12 × 10−3,
t1091 = 8.00, p < .0001). The average win–stay + lose–shift
improved with training (Figure 5E; linear slope 1.05 × 10−3,
t1091 = 8.56, p < .0001) and the mutual information between
reward and stay/switch improved with training (Figure 5F; linear
slope 5.44 × 10−4, t1091 = 4.65, p < .0001). Side bias decreased
with training (Figure 5G; linear slope −1.25 × 10−3,
t1091 = −6.35, p < .0001).

Taken together, these results argue that our reinforcement learn-
ing model with two core features—learning of image values and a
side bias—is sufficient to capture key features of real behavior.

Model Parameters Provide Interpretable Insight Into
Behavioral Strategy

A key advantage of our generative modeling approach, beyond
traditional summary statistics (e.g., mean performance, block
lengths, etc.), is the ability to provide intuitive explanations for
how behavior was generated. Our model has two key components—
a learning component and a decision component. The learning
component determines the image values and the decision compo-
nent turns the relative image values into a decision. The model has
three parameters, which we detail below: learning rate (α), inverse
temperature (β), and side bias (Figure S6A).
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The learning rate, which affects the learning component, deter-
mines how quickly image values are updated following an outcome
(Figure S6B). At its extremes, a learning rate closer to 1 means
learning from only the most recent trials and a learning rate closer to
0 means learning from many previous trials. In this task, higher
learning rates are adaptive, and correspond with faster block transi-
tions and better performance. The inverse temperature determines
choice stochasticity, or how deterministically the model acts (Figure
S6C). High values of inverse temperature correspond to more
deterministic choice functions—the agent will opt to choose the
image with a higher value, even if the difference is small. Small
values of inverse temperature correspond to more random
behavior—the agent will still choose the image with lower value
with reasonable probability. In this task, there is a more complex
correspondence between inverse temperature and performance.
High values of inverse temperature correspond to behavior that
better maximizes reward when the better option is known, but tends
to perseverate at block transitions. In general, higher values of
inverse temperature correspond with better performance. The side
bias determines the model’s preference for a stimulus location,
regardless of relative image values (Figure S3D). Nonzero values of
side bias are strictly maladaptive in this task and correspond to
poorer performance.
To better estimate model parameters, we adopted a hierarchical

Bayesian strategy to fit the reinforcement learning model and obtain
monkey- and session-level parameter estimates (Figure 6A–C and
Figure S7). We related these parameter estimates to performance to
gain better insight. We found that the learning rate improved with
increased performance (Figure 6D; linear slope 2.47, t7 = 7.70,
p < .0001). In contrast, the inverse temperature showed no signifi-
cant linear association with performance (Figure 6E; linear slope
−3.23, t7 = −2.00, p = .086). Because changes in learning rates
and inverse temperatures can partially compensate for one another
(small increase in learning rate can be compensated for by a small
decrease in inverse temperature; Daw, 2011), we sought to measure
their combined effect on P(choice). The maximal trial-by-trial
change in P(choice), which partially accounts for this interaction,
showed an increase with performance (Figure 6F; linear slope 1.00,
t7 = 5.99, p = 5.5 × 10−4). Finally, the absolute value of side bias
showed no change with performance (Figure 6G; linear slope
−5.91, t7 = −1.80, p = .11; see Discussion).
We next sought to estimate how these parameters changed with

training. Learning rates increased with training, which yields better
performance (Figure 6H; linear slope 2.22 × 10−3, t1091 = 3.78,
p = 1.7 × 10−4). In contrast, inverse temperature showed no signifi-
cant change with training (Figure 6I; linear slope −4.02 × 10−3,
t1091 = −1.86, p = .06). This is noteworthy since animals consis-
tently adopted suboptimal inverse temperatures and would have
benefited from increased β values (Figure S8; see Discussion). The
maximal trial-by-trial change in P(choice) improved with training
(Figure 6J; linear slope 9.79 × 10−4, t1091 = 3.53, p = 4.7 × 10−4).
Finally, side bias decreased with training, which permitted better

performance (Figure 6K; linear slope−3.10 × 10−3, t1091 = −5.62,
p < .0001). We obtained similar results after within-animal nor-
malization by z-scoring, though with a small decrease in inverse
temperature with training (Figure S9).
In summary, the reinforcement modeling approach provides a

simple and compelling model for understanding how squirrel
monkeys solve a reversal learning task and provides a tool for

interpreting how the inner mechanisms relate to performance and
how they change with training.

Discussion

The power of comparative neuroscience to dissect cognition
relies on the use of behavioral tasks that engage similar cognitive
mechanisms in different species. Here, we show that squirrel
monkeys solve a reversal learning task, a frequently used behav-
ioral paradigm, similarly to other species. We found that these
animals integrate reward history over many trials to dictate
choices, a commonly observed reinforcement learning motif
across species.

Using generative modeling, we explicitly tested a number of
hypotheses about the strategies animals applied to harvest reward.
We found that animal behavior was consistent with a remarkably
simple strategy: reward history integration over many trials (∼5–10)
and a bias for a particular side. This model outperformed a number
of other reasonable hypotheses. In particular, we found that a one
learning rate model outperformed models with two learning rates.
This is notable since models with two learning rates, which allow for
separate learning from positive and negative reward prediction
errors, are commonly found to better explain behavioral data
(Averbeck, 2017; Dorfman et al., 2019; Frank et al., 2004;
Gershman, 2015; Grossman et al., 2020; Niv et al., 2012;
Taswell et al., 2018), although these tasks often have different
reward statistics than what we used here.

We found that animals did not implement a pure or noisy win–
stay/lose–shift strategy, either in isolation or mixed with a rein-
forcement learning strategy. Why did not animals approximate the
optimal strategy in this task? We emphasize that this strategy is only
optimal if animals are sensitive to differences in reward volume and
seek to maximize reward. Although win–stay/lose–shift is optimal
on this particular task variant, it may not be adaptive across task
variants in general. Reward probabilities vary drastically and
dynamically in natural environments and, presumably, by integrat-
ing reward history, animals would continue to perform well if
reward probabilities changed. Reward could be optimized by tweak-
ing parameters (e.g., adjusting learning rates), rather than changing
the entire behavioral strategy (Doya, 2002). Another potential
reason is that incorrect choices still yielded reward, allowing
animals to perform well enough despite using a suboptimal strategy.
Different neural structures are engagedwhen animals gain from both
options than when they can lose from selecting the incorrect option
(Taswell et al., 2018). It is possible that animals would have better
approximated win–stay/lose–shift if incorrect choices yielded no
reward or mild punishment.

Squirrel monkeys did not adopt optimal combinations of learning
rates and inverse temperatures to maximize reward (Figure S8).
Although animals had some exposure to the basics of the task (data
not included), early in training, we would not expect animals to
implement optimal parameter combinations. With training, they
may approximate ideal parameter combinations with greater knowl-
edge of task statistics. Indeed, we found that learning rates increased
with training, which allows for better performance. Inverse tem-
peratures, however, did not increase, which would be expected to
optimize reward. Lower inverse temperatures meant squirrel mon-
keys made choices more randomly. This finding is consistent with
the notion that squirrel monkeys maintained a high level of
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exploratory behavior, which may be a ubiquitous feature of behavior
even when task demands encourage more deterministic choice
behavior (Ebitz et al., 2019; Pisupati et al., 2021). Limited attention
may also contribute to suboptimal exploratory behavior.
There are at least two kinds of “learning” monkeys implement in

this task. On the trial-by-trial timescale, monkeys learn the image
associations within a block, which is captured by our reinforcement
learning models. On the session-to-session timescale, monkeys
demonstrate a form of “metalearning,” in which they adapt to the
demands of the task structure, which gives rise to the changes in
parameters over sessions (Figure 6). Our modeling approach is able
to capture learning in both of these domains, which we believe offers
a unique strength when interpreting manipulations. For example,
monkeys may only show a “meta-learning” deficit following drug
manipulation, but may otherwise be capable of trial-by-trial rein-
forcement learning.
Side-specific biases were a key feature of behavior in this task.

These low-level idiosyncratic tendencies are often ubiquitous fea-
tures of animal behavior that can be trained out with longer training
protocols, as is often done with macaques (Lau & Glimcher, 2005;
Tsutsui et al., 2016). In rodents, many studies have noted spatial
biases in well-trained mice and rats (Bari et al., 2019; Grossman
et al., 2020; Miller et al., 2017). Despite the presence of suboptimal
side biases, these studies have helped elucidate the neural structures
and representations underlying reinforcement learning. This is
because behavioral strategies can be thought of as a mixture of a
cognitive, reward-history-dependent component, and an idiosyn-
cratic low-level bias. By properly modeling behavior, the effect of a
side bias can be accounted for, allowing for interpretation of the
reinforcement learning component. This was in fact our rationale for
testing a large number of models with a number of “nuisance”
parameters (bias and perseveration)—they not only fit the data better
but allow for better estimation of parameters and latent variables.
We additionally view the presence of side bias to be interesting in its
own right. It can be thought of as a simple heuristic that allows for
reward accumulation with little cognitive cost. We believe the
presence of a mild-to-moderate level of side bias provides the
dynamic range to observe both improvements and impairments
in performance as a function of manipulation. These side biases
are likely not controlled by the same brain regions that engender
flexible behavior (Balleine & O’Doherty, 2010) and can be exag-
gerated by shutting down these structures (Bari et al., 2019).
Because they are independent, it is conceivable that manipulation
may improve performance by reducing the reliance on side bias, an
effect that would be missed if animals were overtrained. In our
study, the reduction in side bias and increase in learning rate were
correlated during training (Figure 6H–K), not because the two
processes rely on the same brain structures but likely because
reduced side bias and increased learning rate yield better
performance.
One potentially inconsistent finding is that the side bias metric

decreased with performance (Figures 3C and 5C), while the bias
parameter from the reinforcement learning model did not show a
statistically significant change (Figure 6G). This is likely because
this particular analysis was underpowered. When we analyzed data
at the session level, we observed a significant decrease in both the
mean and variance of the bias parameter (Figure S3C). For poor
performance, side bias was highly variable. This is because poor
performance could be the result of a strong bias to one side, or it

could be the result of random, reward-insensitive behavior with no
side bias. With better performance, side bias decreased in mean and
variance, because a strong bias places an upper bound on perfor-
mance, no matter how reward sensitive animals are.

Generative modeling allows us to test hypotheses that may be
beyond the reach of simple summary statistics. For example, it is
reasonable that animals could have computed action values in
addition to a side bias (e.g., in a task variant where computing
action values may be adaptive). It is not clear how the choice-based
win–stay/lose–shift analyses we used (Figure 2H), which can test
whether animals implement reward sensitivity to choices versus side
bias, would help if animals implemented a mixture of the two. With
the generative modeling approach, as long as the model is recover-
able, then this hypothesis would be simple to test (Wilson &
Collins, 2019).

Our modeling approach, while generally successful, did not
perfectly recapitulate all behavioral features. One notable failure
was the inability to capture the slight recovery of performance in the
one trial immediately after a Reversal block began (compare
Figures 2C and 4C). Interestingly, we found that simulated data
with a mixture of reinforcement learning and win–stay/lose–shift
was able to partially recapitulate this phenotype. However, the fact
that none of these models fit animal behavior well (Table S1) argues
that win–stay/lose–shift is not a cardinal feature of behavior, at least
given our model selection pipeline. Interestingly, win–stay/lose–
shift may only be a strategy animals implement on particular trials
(Iigaya et al., 2018), which may disfavor a model that assumes win–
stay/lose–shift is implemented on every trial. Perhaps squirrel
monkeys implement win–stay/lose–shift only following large mag-
nitude negative reward prediction errors, accounting for behavior in
the trials immediately after a block change, and otherwise imple-
ment reinforcement learning. Learning rates might also change as a
function of recent reward statistics, yielding nonstationary behav-
ioral strategies (Behrens et al., 2007; Grossman et al., 2020; Nassar
et al., 2012).

One strength of generative modeling is that it allows for
interpretable insights into manipulations, particularly across spe-
cies. Parameter estimates (Figure S7) may be compared across
groups to gain insight into the effects of disease or manipulations
(Aylward et al., 2019; Huys et al., 2013; Kanen et al., 2021). A
complementary approach is to extract the latent variables gov-
erned by these parameters and correlate them with neural activity
(Bari et al., 2019; Findling et al., 2019; Samejima et al., 2005).
Insights at the level of parameters or latent variables may aid
the development of novel therapies, since the development pipe-
line for nervous system therapeutics often stalls due to lack of
objective biomarkers of success (Kola, 2008; Paulus et al., 2016).
Since these types of models have theoretical underpinnings,
parameter changes may be interpreted through the lens of theory.
For example, the volatility of the environment should modulate
learning rates (Behrens et al., 2007), beliefs about the causal
structure of the environment should modulate asymmetric learn-
ing from good and bad outcomes (Dorfman et al., 2019), and the
complexity of action space should govern the inverse temperature
and perseveration (Gershman, 2020).

Our study builds on the notion that model-free reinforcement
learning is a common computational motif present across animal
models. The reinforcement learning model we chose is a fairly
general algorithm that is not specific to the task the squirrel monkeys
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performed. In fact, to best study the cognitive mechanisms under-
lying this algorithm across species, we may need to adjust the task
across species to account for species-specific intelligence. Humans
performing a deterministic reversal learning task would almost
certainly discover that win–stay/lose–shift was the optimal policy
and exploit it. It is well known that humans search for structure even
in purely random data (Kahneman & Tversky, 1972), an inductive
bias that would be leveraged to discover win–stay/lose–shift as an
optimal strategy. Another feature of the task that can be exploited is
the rule governing block switches—80% correct in the past 20 trials.
If animals track this, they can guess block transitions. Rhesus
macaques overtrained on a deterministic reversal learning paradigm
eventually learn expected block lengths (Jang et al., 2015). There-
fore, to best study model-free reinforcement learning in humans and
macaques may require a probabilistic reversal learning task without
overtraining (to avoid win–stay/lose–shift policies), or a task where
the probabilities drift slowly across time, without clear reversals (to
avoid learning expected block lengths; Daw et al., 2006). An
apparent advantage of squirrel monkeys is the ability to train on
a simple reversal learning without needing to control for sophisti-
cated strategies, although behavior on different variants of the task
would need to be compared to verify this intuition.
Squirrel monkeys offer unique advantages relative to other model

organisms. Compared to macaques, squirrel monkeys are small,
easy to manage and house in large numbers, and more cost-effective
per subject. Marmosets, which may offer similar advantages, typi-
cally do not complete many within-session reversals and often
require several days to learn new associations (Clarke et al.,
2011; Takemoto et al., 2015), similar to rodents (Izquierdo et al.,
2017). This means that well-trained squirrel monkeys may more
readily approximate human strategies, which would significantly aid
the ability to translate insights. Our results highlight the utility of
reinforcement learning modeling and validate squirrel monkeys as a
useful behavioral neuroscience model.
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Figure S1: Individual session behavioral features demonstrate reward sensitivity and side bias.
Behavioral features, plotted in a similar fashion to Figure 2. (A) Performance. (B) Image-based win-stay and
lose-shift. Histograms above and to the right are marginal distributions. (C) Average win-stay + lose-shift. (D)
Mutual information between stay/switch and reward on the previous trial. Dashed line is from simulated ran-
dom behavior. (E) Side-based win-stay and lose-shift. Histograms above and to the right are marginal distribu-
tions. (F) Side bias.
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Figure S2: Mean block length decreases with training. The mean block length - another metric of per-
formance - decreased significantly with training, mirroring the increase in fraction correct. Dots represent the
mean block length in individual sessions. Black line shows the fixed effect and thin colored lines show individual
monkey random effects. Colors denote individual monkeys and are consistent between figures.
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Figure S3: Individual session relationship between performance, reward sensitivity, choice bias,
and training. Plotted in a similar fashion to Figure 3. (A) The average win-stay + lose-shift increased with
increased performance. (B) The mutual information between stay/shift and reward increased with performance
> 0.5. (C) Side bias was higher and more widely distributed when performance was closer to 0.5 and reduced in
mean and variance when performance was better. (D) Performance improved with more sessions performed. (E)
The average win-stay + lose-shift improved with training. (F) The mutual information between stay/switch and
reward increased with training. (G) Side bias decreased with training.
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Figure S4: Raw behavior for actual and simulated sessions (A) Top panel: Correct choices as a function
of trial. Large dots indicate a big reward choice and small dots indicate a small reward choice. The black line
shows the fraction correct in the past 15 trials. The dashed line is the performance threshold (80% correct) used
to trigger block transitions. Vertical grey lines indicate block transitions. Middle panel: Choices to images as a
function of trial in the same format as 1C. Black dots indicate a choice to a respective image. Bottom: Choices
to a side as a function of trial. Rightward (leftward) choices are indicated with a black dot on the top (bottom)
of the figure. This session demonstrates a slight rightward side bias. (B) Behavior from the same session was fit
to the reinforcement learning model to estimate parameters. These parameters were used to simulate an entirely
new, synthetic data session.
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Figure S5: Comparison of behavioral features for actual and simulated behavior. To compare how
well actual and simulated behavioral features match, we compute the mean difference between actual and sim-
ulated behavioral features [Mean (actual minus simulated) 95% CI] for each panel. (A) Average performance
for each session. [−0.0015 − 0.0042] (B) Image-based win-stay [−0.0070 − 0.0130] (C) Image-based lose-shift
[−0.0303 − 0.0015] (D) Image-based average win-stay + lose-shift [−0.0043 − 0.0064] (E) Mutual information of
stay/shift and reward on the previous trial [−0.0082−−0.0021] (F) Side-based win-stay [−0.0265−−0.0062] (G)
Side-based lose-shift [−0.0632 − −0.0367] (H) Side bias [−0.0097 − 0.0015]. Colors denote individual monkeys
and are consistent between figures.
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Figure S6: Model illustration and effects of varying parameters (A) Illustration of reinforcement
learning model. Image values are updated by feedback via reward prediction errors (the discrepancy between
predicted and actual rewards). This process is governed by the learning rate (α). The relative image value is
mapped through a softmax function to produce a choice. This process is governed by the inverse temperature
(β) and a side bias parameter. (B) Increasing the learning rate results in faster accumulation of reward value in-
formation. This results in faster block transitions and better overall performance. Decreasing the learning rate
has the opposite effect. (C) Increasing the inverse temperature results in more deterministic choice behavior.
Decreasing the inverse temperature makes choices more random. In this example, increasing the inverse temper-
ature results in slower block transitions but more deterministic behavior after enough trials have elapsed, result-
ing in improved performance. Decreasing the inverse temperature has the opposite effect. Unlike the learning
rate, the optimal inverse temperature is not at an extreme value but depends on the trials to criterion. Greater
trials to criterion will favor a larger β. (D) Side bias results in increased choices of one particular side. Side bias
is purely maladaptive and results in poorer overall performance.

27



0

0.05
SQ5713

0

0.01

0

0.02

0

0.05
SQ5762 5

10-3
0.02

0

0.02
SQ5794 5

10-3

0.02

0

0.05
SQ5821

0

0.01

0

0.04

0

0.02
SQ5824

0

0.02

0

0.05

0

0.02
SQ6205

0

0.02

0

0.05

0

0.02
SQ6210

0

0.02

0

0.05

0

0.01
SQ6213

0

0.02

0

0.04

0

0.01
SQ6214

0

0.01

0

0.05

0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 -3 -2 -1 0 1 2 3
Learning rate (α) Inverse temperature (β)

Pr
ob

ab
ilit

y

Side bias (b)

0 0

0 0
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parameters are drawn. Colors indicate the color used for that monkey throughout figures.
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lation was run for 66 sessions, each 2000 trials long, over 50 α values, 100 β values, and side bias fixed at 0. (A)
Heatmap of performance for combinations of learning rates and inverse temperatures, with side bias fixed at 0.
Performance is poor at low learning rates (regardless of the inverse temperature) and low inverse temperatures
(regardless of the learning rate). In general, there is a large range of learning rates and inverse temperatures
that permits adaptive behavior. Individual monkeys are shown with colored dots. Monkeys consistently main-
tain a suboptimal α/β combination. (B) Performance as a function of inverse temperature for the best learning
rate and side bias = 0. Optimal performance is achieved at β & 4. (C) Performance as a function of learning
rate for the best inverse temperature and side bias = 0. Optimal performance is achieved at α = 1. Colors de-
note individual monkeys and are consistent between figures.
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Parameter Estimates

Figure S9: Within-subject normalization of parameters results in similar changes with training
(A) Normalized learning rates improved with training (linear slope 1.44 × 10−2, t1091 = 17.33, p < 0.0001). (B)
Normalized inverse temperatures decreased with training (linear slope −3.46× 10−3, t1091 = −4.05, p < 0.0001).
(C) Normalized maximal change in P(choice) increased with training (linear slope 1.36 × 10−2, t1091 = 11.13, p
< 0.0001). (D) Normalized absolute side bias decreased throughout training (linear slope −5.61 × 10−3, t1091 =
−7.11, p < 0.0001). Colors denote individual monkeys and are consistent between figures.
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Model

Monkey
RW +

Side bias
(3 parameters)

RW +
Side bias +

Reversal
mechanism

(3 parameters)

RW +
Side bias +

Forget unchosen
(4 parameters)

RW +
Side bias +

Forget unchosen +
reward coded as

[0.25 1]
(4 parameters)

Side bias
(1 parameter)

LH BIC LH BIC LH BIC LH BIC LH BIC

SQ5713 3685 8363 3756 8505 3639 8601 3638 8598 4586 9503
SQ5762 6271 14198 6366 14389 6152 14513 6114 14438 7288 15129
SQ5794 9139 20186 9239 20385 8833 20211 8791 20127 10595 21826
SQ5821 11387 24796 11512 25046 11310 25315 11272 25240 12446 25566
SQ5824 9588 21135 9522 21003 9260 21132 9285 21181 13089 26831
SQ6205 10776 23475 10801 23525 10583 23728 10585 23732 12573 25786
SQ6210 9483 20988 9559 21140 9199 21093 9223 21141 11835 24344
SQ6213 9341 20675 9313 20619 8750 20157 8777 20212 12556 25777
SQ6214 8535 18925 8591 19037 8091 18655 8085 18645 11073 22764

Table S1: Model comparison. Comparison of negative log likelihood (LH) and Bayesian information cri-
terion (BIC) values for the four models best fit to at least one monkey, and one noise model. The four best-fit
models are variations of the Rescorla-Wagner (RW) model with a side bias. The noise model is a side bias only
model. LH and BIC values are sums across all sessions for individual monkeys. Colors in the Monkey column
indicate the color used for that monkey throughout figures. Gray highlights the best model (smallest BIC) for
each monkey.
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