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Abstract

It is well known that context-dependent decisions incur men-
tal costs. While previous research has sought to formalize
these costs at various levels of analysis, we still lack basic
insight into the nature of mental costs, including the under-
lying cognitive resources being consumed. Moreover, many
computational models assume that mental costs scale linearly
with the cognitive resource being used, an assumption of con-
venience that has yet to be systematically tested. To address
these gaps, we build on rate-distortion theory by formaliz-
ing an information-theoretic notion of mental costs. Specifi-
cally, we define the cost of policies—the mappings from states
to actions—as a function of the mutual information between
states and actions, the policy complexity. Across four decision-
making experiments featuring diverse task manipulations, we
find that this mental cost formulation offers a parsimonious
description of how humans adaptively adjust their policy com-
plexity across different tasks. Notably, a quadratic mental cost
formulation, where increases in policy complexity incur supra-
linear costs, provides the best fit. These findings highlight the
meta-cognitive ability of humans to account for mental costs
when forming decision strategies, and pave the way towards a
domain-general quantification of mental effort.
Keywords: rate-distortion theory; policy compression; action
selection; motivational effects; mental effort; mental costs

Introduction
Mental effort significantly impacts decision making: people
avoid tasks with high cognitive demands (Kool et al., 2010)
and exert more effort for more reward (Krebs & Woldorff,
2017). Despite these empirical findings, it remains unclear
why mental effort is costly. One recent perspective is re-
source rationality—the idea that the brain must adapt to envi-
ronmental demands and internal resource limitations (Lieder
& Griffiths, 2020). These resource limitations are thought to
give rise to the mental effort of cognition (Kool & Botvinick,
2018). Even so, the problem of mental effort remains ill-
constrained, and it is unclear whether there are generalizable
formulations of mental costs (Shenhav et al., 2017).

We shed light on the nature of mental costs in contextual
decisions through rate-distortion theory and rational inatten-
tion (Maćkowiak et al., 2023). This builds upon the idea
that the mind is an information processing system that can
be understood via its inputs and outputs (Marr, 2010; Simon,
1978). We use the policy compression framework, which de-
fines the mental cost of a policy in terms of its policy com-
plexity. If the policy’s cost exceeds what the agent is willing
to pay, it must compress its policy by making it less state-
dependent, which reduces the mental cost.

Here, we quantify the mental cost of policy complexity and
test the assumption that mental costs scale linearly with the
resource being used (Bhui et al., 2021). We conducted four
human experiments manipulating intertrial intervals (ITIs),
stimulus set sizes, and reward magnitudes. We fit models with
different cost formulations to predict empirical policy com-
plexity, and confirmed human sensitivity to relevant mental
costs. We also found that human cost functions are supra-
linear in policy complexity, which has implications for the
neural instantiation of such costs. These findings represent
a promising step toward a domain-general quantification of
mental effort in human decision making.

Methods
Theory: Policy compression
The brain has evolved to function under myriad cognitive re-
source constraints; here we focus on the transmission of infor-
mation. We model an agent executing a policy, π(a|s), a prob-
abilistic mapping from states s to actions a. For a resource-
rational agent, we formalize the cognitive resource as the mu-
tual information between states and actions, Iπ(S;A), or pol-
icy complexity (Gershman, 2020; Parush et al., 2011; Sims,
2016). We focus on Iπ(S;A) due to Shannon’s noisy channel
theorem, which states that the minimum expected number of
bits to transmit a signal across a noisy channel without error
is equal to Iπ(S;A) (Figure 1A). High-complexity policies re-
quire more bits to execute and thus recruit more resources.
To investigate how humans determine an optimal allocation
of resources (their Iπ(S;A)), it would be informative to derive
the maximum attainable reward at any given Iπ(S;A). To do
so, we must find the optimal policy, π∗ = argmaxπ V π subject
to Iπ(S;A)≤C for every C, where V π is the expected reward
under π. This problem has the following Lagrangian form:

π
∗(a|s) = argmax

π

βV π − Iπ(S;A)+∑
s

λ(s)
(

∑
a

π(a|s)−1
)
(1)

where β,λ(s) are Lagrangian multipliers to enforce I(S;A)≤
C and policy normalization.1 Solving the Lagrangian leads to

1While Equation 1 contains a linear Iπ(S;A) term, we only in-
troduced it to numerically derive the optimal policy at each Iπ(S;A)
level, which enabled us to trace out task-specific reward-complexity
frontiers (e.g., Figure 1D). We do not commit to its implied assump-
tion that human mental costs are linear in Iπ(S;A), and will system-
atically compare linear and nonlinear cost formulations later on.
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Figure 1: The policy compression framework. (A) The pol-
icy as a communication channel. A state distribution P(s)
generates states s that are encoded into memory, yielding a
codeword c. The codeword is then mapped onto an action a
according to P(a|c). Together, encoding and action selection
produce the policy π(a|s). (B) The optimal policy includes a
state-dependent term, Q(s,a), and a state-independent term,
logP(a). The logP(a) term biases choices towards actions
frequently chosen across all states. The β parameter deter-
mines the relative contribution of Q(s,a) and logP(a), con-
trolling the policy’s state-dependence. (C) The β parameter
increases monotonically with policy complexity. We high-
light two optimal policies at different policy complexity lev-
els. The optimal policies trace out the reward-complexity
frontier, which delimits achievable performance for a given
policy complexity. (D) Reward-complexity frontier for Ex-
periment 1. (E) Proposed linear relationship between RT and
policy complexity. (F) Time-averaged reward as a function
of policy complexity for each ITI under the linear RT rela-
tionship in (E); the policy complexity that maximizes time-
averaged reward for each condition is highlighted (vertical
lines). Panels A-C adapted from Lai and Gershman (2024);
Panels D-F adapted from Liu et al. (2024).

the solution:

π
∗(a|s) ∝ exp(βQ(s,a)+ logP∗(a)) (2)

where Q(s,a) is the expected reward for taking action a in
state s and P∗(a) = ∑s π∗(a|s)p(s) is the optimal marginal ac-
tion distribution. The optimal policy is similar to the softmax
decision rule (Sutton & Barto, 2018), but additionally fea-
tures influence from P∗(a), which biases the optimal policy
towards frequently taken actions (Figure 1B). The Lagrange
multiplier, β, is analogous to the inverse temperature parame-
ter and changes based on the desired policy complexity level:
β−1 = dV π

dIπ(S;A) . It is large at high policy complexity and small
at low policy complexity. By varying β and calculating the

optimal policy, we can trace out the reward-complexity fron-
tier, which delimits the maximal trial-averaged reward obtain-
able at any given policy complexity level (Figure 1C,D). In
general, high-complexity policies yield more reward per trial
than low-complexity policies. Moreover, low-complexity
policies are dominated by the logP∗(a) term, a form of state-
independent perseveration (Lai & Gershman, 2021).

The reward-complexity frontier prescribes only that agents
should fall somewhere along it, without specifying an exact
Iπ(S;A) level they should select. If we assume the agent has a
fixed resource budget, its Iπ(S;A) should never change across
tasks. If the agent aims to maximize trial-averaged reward
and has sufficient resources, its Iπ(S;A) should always be the
maximum allowable (e.g., 2 bits in Figure 1D). The empiri-
cally inaccurate predictions above arise because they ignore
the time costs of Iπ(S;A). To understand why an agent would
adaptively adjust its Iπ(S;A) across non-maximal levels, let us
assume states are represented as codewords through entropy
coding, a canonical example being the Huffman code (Huff-
man, 1952). The Huffman code corresponds to a binary tree
in which leaf nodes correspond to decoded states, where more
complex state descriptions necessitate more leaf nodes and
therefore more bits. If we assume bits are inspected at a con-
stant rate, then high-complexity policies require longer read-
out times to reveal the decoded action, necessitating longer
response times (RTs) (Hick, 1952). Moreover, given that bits
are inspected at a constant rate, the trial-averaged RT should
be a linear function of Iπ(S;A) / average description length,
with some offset to reflect motor delay (Figure 1E).

To model human decision making as sensitive to these time
costs, we assume subjects attempt to maximize time-averaged
reward (Balci et al., 2011; Drugowitsch et al., 2015):

V π

time(I(S;A)) =
V π(I(S;A))

RT(I(S;A))+ ITI
(3)

where V π

time(I(S;A)) is the time-averaged reward. V π(I(S;A))
is a function of policy complexity through the derivation of
the optimal policy2 (i.e., the reward-complexity frontier in
Figure 1D) and RT(I(S;A)) is a function of policy complexity
through the assumption of a linear relationship between RT
and policy complexity (Figure 1E). This yields the relation-
ship in Figure 1F, where we varied the ITI. To maximize time-
averaged reward, humans should decrease policy complexity
when ITIs are short; although these policies result in less trial-
averaged reward, they increase time-averaged reward because
they allow agents to perform more actions due to smaller de-
coding time cost. The theory also predicts that RTs should
grow as a function of the number of possible states, a type of
set-size effect. This is because larger sets require higher pol-
icy complexity to maximize time-averaged reward, which in
turn demands longer decoding time. Finally, the theory pre-
dicts that greater reward magnitudes should increase policy
complexity by increasing the numerator, V π(I(S;A)).

2Due to our study’s focus on how humans determine their I(S;A),
we assume that they always use the optimal policy at their chosen
I(S;A) level. How humans find this policy is a topic for future work.



General task description
Experiments 1-2 were from Liu et al. (2024). Here we aug-
ment the new Experiments 3-4, which generalize the theory to
extreme cognitive loads and a different domain (reward mag-
nitude changes). Participants did not overlap across experi-
ments and gave informed consent. All statistical tests on be-
havioral variables were preregistered; the mental cost model-
ing is post-hoc. Data and code are available at https://github.
com/LSZ2001/policycompression mentalcostmodeling.

Experiment 1
Procedure. Each participant completed three blocks of tri-
als with ITIs of 0s, 0.5s, and 2s. The block order was ran-
domized across participants. Participants were informed of
the ITI of each block. Participants were informed that they
would receive a bonus proportional to their performance for
each block. There were four possible states (images) and four
available actions. Each stimulus was assigned a unique opti-
mal action (Figure 2B). Participants were informed that the
stimulus-action mapping was held fixed across all blocks.

On each trial, participants were presented with one image
(state) and responded by pressing one of several possible key-
board keys (actions; Figure 2A). Stimulus presentation was
counterbalanced within runs of 8 trials, where the stimulus
presentation order was randomized within each run and each
of the four images appeared exactly twice per run. We did
this to ensure a uniform state distribution P(s), allowing us
better estimate policy complexity. Reward delivery was bi-
nary and probabilistic: each state was associated with one
optimal action (Figure 2B). After making a response, partici-
pants were given immediate feedback for 0.3s—either a green
border around the image to indicate reward or a gray border to
indicate no reward. A fixation cross then appeared through-
out the ITI. Each block lasted until 3 minutes elapsed and the
current run of trials finished. Participants could track the re-
maining time and reward earned during the block, displayed
as red and green bars respectively. At the end of each block,
they were provided with feedback on the total reward they
earned in that block (Figure 2C).

Participants completed three 1-minute training blocks, one
for each ITI condition, to familiarize themselves with the task
and learn the mapping from stimulus to response. These data
were not analyzed. Participants then completed the three 3-
minute blocks where ITI was varied, as mentioned above.

Participants. 100 participants (37 women, 61 men, 1 non-
binary, 1 prefer not to say) were recruited. We selected the
sample size based on the lowest estimated effect size (Co-
hen’s d = 0.312) of interest, according to estimates from a
separate group of N = 48 pilot participants (data excluded
from final analysis). The behavioral analyses were preregis-
tered at https://aspredicted.org/blind.php?x=VF2 NH6. We
excluded 3 participants for having an average RT for any
block exceeding 5 seconds, leaving data from 97 participants
(35 women, 60 men, 1 non-binary, 1 prefer not to say) for
subsequent analyses.
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Figure 2: Experiment design. Here we illustrate Experiment
1, as other experiments feature similar designs. (A) The four
possible states (images) and the corresponding optimal ac-
tions (key presses). The mapping between images and keys
was randomized across participants. (B) Reward probability
for each state-action pair. The optimal action for each state
is indicated by a green border. (C) On every trial, the par-
ticipant observes an image (state) and responds by pressing
a key (action). They can track the cumulative reward (green
bar) and time remaining (red bar) in the block. Reward feed-
back is provided as an image border, whose color indicates
the reward magnitude. Participants then see a fixation cross
during the ITI before proceeding to the next trial. Participants
are informed of the block’s ITI before starting.

Experiment 2
Procedure. The three test blocks had stimuli set sizes of 2,
4, and 6 stimuli respectively, and their order was randomized
across participants. Each set size used unique images to make
each set-size manipulation as independent as possible. The
action set size was fixed at 6 across all set-size conditions.
We used ITI = 2s for each block. Participants were informed
of the ITI and set size of each block.

Each stimulus was associated with a unique optimal ac-
tion. Like Experiment 1, optimal actions yielded reward with
probability 0.75 and suboptimal actions yielded reward with
probability 0.25. Stimuli were randomized and presented in
counterbalanced runs of 8, 8, and 10 trials for set sizes 2, 4,
and 6 respectively (each stimulus therefore appeared 4 times,
2 times, and 2 times respectively within each run).

For each set-size condition, participants first completed
three training blocks with ITI = 0s, 0.5s, and 2s, similar to Ex-
periments 1 and 2. We did this to encourage learning and min-
imize the length of training. To ensure similar learning across
set-size conditions, we presented each stimulus 48 times dur-
ing training (24 for ITI = 0s, 16 for ITI = 0.5s, and 8 for ITI =
2s) rather than training for a fixed time duration. Participants
were told that the mapping from stimuli to actions remained
fixed between training and test blocks. After completing the



three training blocks, participants proceeded to the 3-minute
test block of the same set-size. The structure, visual display,
and duration of blocks were identical to Experiment 1.

Participants. 101 participants (54 women, 44 men, 2 non-
binary, 1 prefer not to say) were recruited. We selected the
sample size based on the lowest estimated effect size (Co-
hen’s d = 0.459) of interest, according to analyses of a sep-
arate group of N = 48 pilot participants (data excluded from
final analysis). The preregistration is at https://aspredicted.
org/ZSW HFY. The inclusion criterion was identical to Ex-
periment 1. 99 participants (53 women, 43 men, 2 non-binary,
1 prefer not to say) were included for analyses.

Experiment 3
Procedure. The procedures are mostly identical to Exper-
iment 2, with the following changes: 1) The three 3-minute
test blocks had set sizes of 2, 6, and 7 to impose extreme cog-
nitive loads. 2) The number of available actions was equal to
the set size of that block. 3) Unlike the training in Experi-
ment 2, there are three 1-minute training blocks before each
test block sharing the same set size, with ITI 0s, 0.5s, and 2s.

Participants. 157 participants (70 women, 85 men, 1 non-
binary, 1 prefer not to say) were recruited. We selected the
sample size based on typical sample sizes for policy compres-
sion experiments. The preregistration is at https://aspredicted.
org/bpp2-djvs.pdf. The inclusion criterion was identical to
Experiment 1. 153 participants (68 women, 83 men, 1 non-
binary, 1 prefer not to say) were included.

Experiment 4
Procedure. Each participant completed two test blocks of
trials with different reward magnitudes, specified in U.S.
cents (¢) provided as bonuses. The block order was random-
ized across participants. In each block, there were four pos-
sible states (images) and four available actions, where each
state was assigned a unique optimal action (Figure 2A). Each
block used unique images, requiring participants to relearn
the state-action mappings for every block.

Each test block contained 100 trials. On each trial, par-
ticipants saw one image (state) and responded by pressing
one of four keyboard keys (actions). The order of state pre-
sentation was randomized and each state was presented for
25 trials to ensure a uniform state distribution. If the action
taken was suboptimal for the presented state, the participant
received 0.024¢. If the action was optimal, the participant
received 0.024¢ with 0.2 probability or a larger reward with
0.8 probability (Figure 2B). For the high reward magnitude
block, the larger reward was 2.5¢. For the low reward mag-
nitude block, the larger reward was 0.025¢. On every trial,
participants needed to respond in 1 second; otherwise, they
lost -0.5¢ and were immediately redirected to the next trial.
The final bonus was the summed reward over test blocks.

After making a response or failing to respond in 1 sec-
ond, participants were given feedback for 0.5s—either a dark
green image border to indicate 2.5¢ reward, a light green

border to indicate 0.025¢ reward, a gray border to indicate
0.024¢ reward, or a red border to indicate -0.5¢ loss. A fixa-
tion cross appeared during the ITI, with an adaptive duration
such that the time spent per trial was exactly 1.5 seconds.

Before each test block, participants additionally completed
one training block with 60 trials, where the images used and
the state-action mapping are identical to the upcoming test
block to facilitate learning. These data were not analyzed.

Participants. 121 participants (61 women, 60 men) were
recruited. We selected the sample size based on the lowest
estimated effect size (Cohen’s d = 0.301) of interest, accord-
ing to estimates from a separate group of N = 28 pilot partici-
pants (data excluded from final analysis). The preregistration
is at https://aspredicted.org/mtwr-4rm2.pdf. We excluded 2
participants for not responding for more than or equal to 20
test block trials, leaving data from 119 subjects (60 women,
59 men) for subsequent analyses.

Statistical analyses and modeling
We estimated policy complexity for each participant in each
condition using the Hutter estimator (Hutter, 2001). All tests
were one-sided paired t-tests in the preregistered directions:
ITI = 0s versus 2s for Experiment 1, set size 2 versus the
largest set size for Experiment 2-3, and the low versus high
reward conditions for Experiment 4. It is well known that ex-
erting cognitive control during action selection taxes mental
effort (Kool et al., 2010; Krebs & Woldorff, 2017; Shenhav et
al., 2017; Umemoto & Holroyd, 2015). We therefore postu-
lated that policy complexity should incur a mental cost, where
more complex policies are more cognitively demanding and,
therefore, more subjectively effortful. We model subjects as
optimizing policy complexity (i.e., picking a policy of the de-
sired policy complexity) as follows:

I(S;A)∗ = argmax
I(S;A)

V π(I(S;A))−MentalCost(I(S;A))
RT(I(S;A))+ ITI

(4)

where I∗ is the optimal policy complexity level, V π(I(S;A))
is the task-specific reward-complexity frontier, and
MentalCost(I(S;A)) and RT(I(S;A)) are the agent-specific
relationships between mental cost / average RT and policy
complexity (which we assume are monotonically increasing).
To characterize RT(I(S;A)), we fit a linear mixed-effects
(LME) model separately for each experiment to predict the
average RTs of participants in each task condition. The
LME model contained fixed and participant-specific random
effects for intercepts and policy complexity.

For Experiment 4 only, the task structure ensured reward
rate was independent of response time (i.e., trials lasted a
fixed duration, regardless of response times). Therefore, op-
timizing time-averaged reward vs trial-averaged reward were
identical. We hence assumed agents were optimizing trial-
averaged reward when selecting their policy complexity:

I(S;A)∗ = argmax
I(S;A)

V π(I(S;A))−MentalCost(I(S;A)) (5)



To characterize MentalCost(I(S;A)). we fit three models:

MentalCost(I(S;A))=


0, NoCost
θ1I(S;A), LinearCost
θ1I(S;A)+θ2I(S;A)2, QuadCost

(6)
which formalize no mental cost, linear cost in I(S;A), and
quadratic cost. Notably, the LinearCost model is equivalent to
rational inattention models in economics (Gershman & Bhui,
2020), which similarly apply rate-distortion theory but treat β

as a mental cost sensitivity parameter, instead of a Lagrangian
multiplier for constrained optimization. We fit models via the
No U-Turn Sampler (NUTS) in Numpyro, report the leave-
one-out expected log predictive densities (ELPD-LOO) for
model comparison, and visualize posterior predictive means.

For Experiment 4, the low reward condition created diffi-
culties in model fitting, as the range of possible total reward
spanned less than 1¢, meaning rational agents should exert 0
policy complexity in this condition.3 This is not what we ob-
served (Figure 3, Row 2) and we addressed this discrepancy
by assuming a subjective utility for responding accurately.
We made an ad-hoc assumption and transformed the subjec-
tive reward for correct responses to 75% that of the high re-
ward condition, which produced qualitatively good fits.

Results
Behavioral results
For each of the four experiments, participants lay close to the
optimal reward-complexity frontier (Figure 3 Row 1). Con-
sistent with theoretical predictions, subjects adopted policies
with higher complexity with longer ITIs, with larger set sizes,
and when the reward magnitude was high (Row 2). Note that
these qualitative predictions came from optimizing Equation
4 (Equation 5 for Experiment 4). We next sought quantitative
predictions, and optimized Equations 4 and 5 assuming no
mental cost. The difference between this optimal policy com-
plexity, assuming no mental cost, and empirically-estimated
policy complexity is shown in Row 3. Here, we see a sys-
tematic leftward bias, indicating that subjects are consistently
adopting policies with lower complexity than what is optimal
for each task condition. This suggests that policy complexity
incurs a mental cost, dissuading subjects from adopting the
optimal policy complexity for each task. LME modeling of
the relationship between policy complexity and RT achieved
visibly good fits and revealed positive slopes for most par-
ticipants, consistent with the idea that average RTs should
linearly increase with policy complexity. Model comparison
supported the LME’s linearity assumption (Liu et al., 2024).

Quantitative modeling of mental effort
Following the success of the RT(I(S;A)) LME fits, we pro-
ceeded to characterize the relationship between mental cost
and policy complexity. We did this by fitting each of the men-
tal cost models in Equation 6 to participant behavior.

3Experiments 1-3 had binary rewards and did not have this issue.
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Figure 3: Humans systematically exhibit less than opti-
mal policy complexity. Columns 1-4 correspond to Experi-
ments 1-4. Colors denote task conditions. Row 1: Reward-
complexity frontiers for each experiment, overlaid with hu-
man I(S;A) and trial-averaged reward. Row 2: Mean±SEM
of human I(S;A) across conditions. Row 3: Difference be-
tween optimal and empirical I(S;A) across conditions. Ex-
periment 1-2 results are adapted from Liu et al. (2024).
For Experiment 4, the dotted pink line denotes the reward-
complexity frontier after an ad hoc reward transformation for
the low-reward condition, used for mental cost modeling.

The NoCost model severely overestimated human policy
complexity (Figure 4 Row 1; shown as densities left of the
vertical line). In contrast, mental cost consideration in the
LinearCost and Quadcost models produced more accurate es-
timates of human policy complexity across all experiments
(Row 1; QuadCost shown as densities to the right of the ver-
tical line). The model fits revealed positive and monotoni-
cally increasing mental costs over policy complexity, consis-
tent with intuition (Row 2). Model comparison consistently
preferred the QuadCost model across experiments (Table 1),
with all ELPD-LOO differences between model pairs signif-
icant at the α = 0.005 level. These results support the idea
that policy complexity incurs a supralinear mental cost.

Table 1: ELPD-LOO of models, summed over participants.
Exp. NoCost LinearCost QuadCost
1 −403.7 133.9 161.8
2 −417.6 −141.6 −104.8
3 −862.0 −256.3 −222.4
4 −520.4 −276.1 −149.3

Discussion
Across four datasets spanning three distinct task manipula-
tions, we identified a systematic underallocation of cognitive
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Figure 4: Mental cost modeling results. Columns 1-4 correspond to Experiments 1-4. Colors denote models. Row 1: Violin
plots of the difference between predicted and empirical I(S;A). Densities to the left and right of the vertical line correspond to
the NoCost and QuadCost models. Row 2: Mean±SEM of fitted MentalCost(I(S;A)) functions across participants.

resources. In contrast, models that incorporate mental costs
could better explain human decisions. These results confirm
that humans meta-cognitively account for their mental effort
during contextual decisions, akin to rational inattention (Ger-
shman & Burke, 2023) and rational meta-reasoning accounts
(Lieder & Griffiths, 2017). In our experiments, this mental
cost reflects the burden of memorizing state-action mappings.
These findings raise additional process-level questions about
how humans dynamically determine their policy complex-
ity level (e.g., memory encoding strength) and optimize their
memory representations over time—an area that requires fur-
ther theory development and computational modeling.

Our key contribution here is revealing human sensitivity
to a specific mental cost formulation—policy complexity—in
contextual decision-making, and assessing the cost function’s
functional form. Such cost sensitivity is independent from
time cost considerations, and humans determine their Iπ(S;A)
according to both. Model comparison favored a quadratic
mental cost in policy complexity, which differs from typical
linear assumptions (Gershman & Bhui, 2020; Prat-Carrabin
& Woodford, 2024). Interestingly, neuroscience studies
have similarly suggested that the metabolic cost of informa-
tion flow across synapses is supralinear (Laughlin, 2001).
Because individual synapses convey little information due
to noise, neurons rely on many synapses; however, many
synapses transmit identical signals, increasing the cost per
bit. The success of the QuadCost model raises questions
about past attempts to quantify a hard limit to human mem-

ory (Miller, 1956). While such a hard limit certainly exists
(the brain contains finite neurons), empirically identifying
this limit is rendered difficult by the continuous mental cost
of memory. The QuadCost model implies that each marginal
increase in policy complexity incurs greater and greater costs;
hence humans may choose not to pay increasing costs under
increasingly memory-intensive tasks, even if they possess the
capacity to encode information at a higher bit rate. However,
the resulting “soft ceiling” is mainly a theoretical argument,
as the observed increase in policy complexity from set size 6
to 7 suggests that participants have not reached this ceiling.
To better understand this nonlinear relationship, future stud-
ies should explore non-memory-intensive tasks and develop
neurobiological models consistent with such supralinear in-
formation costs (Badre et al., 2021; Laughlin et al., 1998).

One advantage of our abstract, information-theoretic for-
mulation is that it can be readily applied to various task se-
tups, parallel to the diverse applications of rate-distortion
theory. This means future studies can attempt to define the
functional form of mental costs in diverse domains includ-
ing perception, visual working memory, generalization, and
intertemporal choice (Bhui et al., 2021; Jakob & Gershman,
2023; Sims, 2015; Sims et al., 2012). In this way, the univer-
sality of an information-theoretic formulation of mental costs
can be studied directly. In the future, we hope to develop a
more rigorous and comprehensive account of the mental cost
of policy complexity, so as to deepen our understanding of
mental effort and their instantiations in human behavior.
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Maćkowiak, B., Matějka, F., & Wiederholt, M. (2023). Ratio-
nal inattention: A review. Journal of Economic Literature,
61(1), 226–273.

Marr, D. (2010). Vision: A computational investigation into
the human representation and processing of visual infor-
mation. MIT press.

Miller, G. A. (1956). The magic number seven plus or minus
two: Some limits on our capacity for processing informa-
tion. Psychological review, 63, 91–97.

Parush, N., Tishby, N., & Bergman, H. (2011). Dopaminergic
balance between reward maximization and policy complex-
ity. Frontiers in Systems Neuroscience, 5, 22.

Prat-Carrabin, A., & Woodford, M. (2024). Endogenous pre-
cision of the number sense. bioRxiv, 2024–03.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths,
T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward
a rational and mechanistic account of mental effort. Annual
review of neuroscience, 40, 99–124.

Simon, H. A. (1978). Information-processing theory of hu-
man problem solving. Erlbaum Hillsdale, NJ.

Sims, C. R. (2015). The cost of misremembering: Inferring
the loss function in visual working memory. Journal of vi-
sion, 15(3), 2–2.

Sims, C. R. (2016). Rate–distortion theory and human per-
ception. Cognition, 152, 181–198.

Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal
observer analysis of visual working memory. Psychologi-
cal review, 119(4), 807.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Umemoto, A., & Holroyd, C. B. (2015). Task-specific effects
of reward on task switching. Psychological research, 79,
698–707.


