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Abstract1

Medical providers make more errors under cognitive load, often viewed as arising from suboptimal2

decision-making. This interpretation relies on frameworks that ignore cognitive costs. Here, we3

offer a fundamentally different perspective that reveals an underlying structure to medical errors:4

bias (systematic deviations) and noise (variability) are inevitable consequences of optimal decision-5

making under cognitive resource constraints. We analyze orders placed by emergency department6

providers and find that cognitive load increases bias and noise, consistent with the optimal al-7

location of resources. Because providers near-optimally adjust to cognitive demands, this argues8

that guidelines that increase cognitive resources are necessary to reduce errors. Consistent with9

this perspective, bias and noise are minimized when multiple providers contribute to patient care.10

These findings have implications for optimizing medical care.11
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Introduction12

Medical providers make decisions under significant cognitive load. They contend with high patient13

volumes, vast amounts of information, and limited time. It stands to reason that these cognitive14

factors should influence decision-making, prompting providers to adopt strategies that balance15

the utility of their decisions with cognitive costs. It is well established that cognitive fatigue16

leads providers to adopt strategies that lead to medical errors [1, 2, 3, 4, 5, 6]. This has led to17

the suggestion that the strategies employed by medical providers are strictly suboptimal [7], a18

statement based on normative frameworks that ignore cognitive costs.19

Cognitive costs cannot, however, be ignored [8]. Accounting for these costs has been essential in20

explaining phenomena across fields ranging from neuroscience to moral judgment. It is therefore un-21

clear whether providers employ decision-making strategies that are optimized for efficient memory22

use under cognitive constraints. In other words, how should providers adapt to demands on cogni-23

tion and do their decision-making patterns follow these principles? Establishing this understanding24

is critical, as it provides insight into the source of medical errors and can inform interventions to25

support medical decision-making.26

To address this question, we formalize the notion of optimal decision-making under cognitive27

resource constraints. We turn to rate-distortion theory, which analyzes how constraints on informa-28

tion transmission across a noisy channel affect distortions of input signals. Rate-distortion theory29

has been used to understand how a variety of human behavioral phenomena arise from information30

capacity limits [9, 10, 11, 12, 13]. Here, we use rate-distortion theory to model decision-making as31

a capacity-limited channel [14]. To test the theory’s relevance in natural environments, we focus on32

real-world orders placed by medical providers in the emergency department, a setting with large33

shift-to-shift variation in patient volume that offers a natural setting to observe changes in cognitive34

load.35

Consistent with the optimal use of limited resources, we find that medical decisions tend towards36

increased bias (systematic deviations) and noise (variability) as cognitive load increases. Consistent37

with theory, bias is not constant but adapts according to patient characteristics. A unique pre-38

diction is that adaptation produces perseveration—a tendency to repeat orders—which represents39

an efficient strategy to conserve resources. Across four independent measures of cognitive load,40

we confirm a relationship between cognitive load and perseveration. Finally, we show that bias41

and noise are minimized when multiple providers contribute to patient orders. This suggests that42

collaborative decision-making may mitigate the effects of cognitive load.43

Results44

Decision-making as a capacity-limited channel45

We model each provider as a distribution over orders conditional on the patient (Figure 1A), which46

we term the policy, π(Order|Patient). Throughout this manuscript, ‘policy’ is a technical term in47

reinforcement learning, referring to a provider’s internal strategy for selecting actions, rather than48

an externally imposed set of guidelines, as the term is typically used. The policy is constrained49

by an upper bound on the mutual information between patients and orders, the policy complexity50

Iπ(Patient;Order), which defines the amount of memory needed to encode the policy; the more51

orders depend on patient-specific characteristics, the greater the policy complexity, and the more52

memory required to store that policy. The optimal policy maximizes expected utility Uπ subject53

to the capacity constraint Iπ(Patient;Order) ≤ C, which can be reformulated as:54

π∗ = argmax
π

βUπ − Iπ(Patient;Order), (1)
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Figure 1: Decision-making modeled as a capacity-limited channel. (A) Patient repre-
sentations are transmitted through a capacity-limited information channel to produce policy π, a
conditional distribution of orders for a given patient. Given assumed utilities of patient-specific or-
ders (blue inset), rate-distortion theory provides the optimal policy which can be used to trace out a
utility/complexity frontier (black line). Each point on the frontier corresponds to a different choice
of trade-off parameter β. (B) The optimal policy is a softmax function, seen ubiquitously in the rein-
forcement learning literature. It consists of two factors: patient-specific orders, Q(Patient,Order),
and default orders, P (Order). (C) The parameter β controls the utility/information trade-off.
When β is large (top panel), the policy results in more patient-specific orders but requires more
memory (here, 1 bit). When β is small (bottom panel), the policy results in more default orders
but require less memory (here, ≈ 0.16 bits). This results in noisier policies that are biased towards
default orders.

where β ≥ 0 is a trade-off parameter implicitly reflecting the capacity constraint C. The advantage55

of this formulation is that the optimal capacity-limited policy can be expressed explicitly:56

π(Order|Patient) ∝ exp[β Q(Patient,Order) + logP (Order)]. (2)

The optimal policy is a function of two terms (Figure 1B): the utility of patient-specific orders,57

Q(Patient,Order), and the default (marginal) probability of orders,58

P (Order) =
∑

Patient

P (Patient)π(Order|Patient). (3)

The expected utility is given by Uπ = E[Q(Patient,Order)|π].59

The trade-off between utility (which we seek to maximize) and policy complexity (the memory60

cost that we seek to minimize) is dictated by β. When β is large, the policy is strongly dictated61

by patient-specific orders, resulting in a policy with high utility and high policy complexity, ne-62

cessitating more memory (Figure 1C). This is the solution when memory constraints are ignored.63

At the other extreme, when β is small, the policy is strongly dictated by the default order distri-64

bution, resulting in a policy with comparatively lower utility but with the benefit of demanding65
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less memory—what we term policy compression [14]. Intermediate β values interpolate between66

these two regimes, mixing patient-specific orders and default orders to generate the policy. This67

generates the utility/complexity frontier in Figure 1A, in which utility monotonically increases with68

policy complexity.69

We sought to understand how cognitive load affects the optimal policy. In Figure 2A, we70

present a toy example where we define cognitive load as the number of concurrent patients that a71

provider must manage. Consistent with intuition, when a resource-limited provider manages more72

patients, the utility of care diminishes slightly, because the same memory must now be spread73

across more patients. Figure 2B highlights how this arises: regardless of the provider’s policy74

complexity, the optimal β parameter is always smaller under higher cognitive load. This has two75

critical consequences (Figure 2C). First, decreased β produces a smaller reliance on patient-specific76

orders, which makes the policy more random. We can see this in Figure 1C, where the policy under77

smaller β has higher entropy (i.e., increased randomness). Second, decreased β produces a greater78

reliance on default orders, which introduces bias. This can again be observed in Figure 1C, where79

the policy is biased towards the default order distribution.80

Policy compression in the emergency department81

To identify signatures of noise and bias in medical decisions, we analyzed orders placed by medical82

providers over a 5-year period in an emergency department serving a major metropolitan area. This83

dataset consisted of 5,934 providers placing approximately 9 million orders across 448,129 patient84

encounters. Owing to well-known problems with estimating information-theoretic quantities from85

sparse distributions [15, 16], we collapsed the 3,258 unique orders into two categories: laboratory-86

based orders and other orders. This yielded a near maximal entropy distribution (P (Labs) = 0.554,87

P (Other) = 0.446), ideal for calculating information-theoretic quantities [17]. For each patient, we88

calculated the policy based on the first 10 orders placed for that patient (Figure 2D). We did this89

to ensure information-theoretic quantities were being estimated on similar distributions for each90

patient. We calculated the policy exclusively for instances where only one provider placed all 1091

orders because we are interested in the cognitive properties of individual providers.92

Because the electronic medical record we queried does not record the number of concurrent pa-93

tients under a provider’s care, we operationalized cognitive load as the total number of patients in94

the emergency department. Intuitively, if there are more overall patients in the emergency depart-95

ment, then there will be an increase in the average number of patients per provider. We found that96

policy complexity decreases with cognitive load (βTotal number of patients = −0.581, t168 = −9.26, p <97

10−16; Figure 2E) consistent with the idea that cognitive resources are stripped as the emergency98

department becomes crowded. According to the theory, both increased cognitive load in a busy99

emergency department and reduced policy complexity lead to a decreased β parameter, which in-100

creases both noise and bias. To test whether decisions become noisier, we estimated the conditional101

entropy of the policy, which quantifies the randomness of the policy. Consistent with theory (Figure102

2F), conditional entropy increases with cognitive load (βTotal number of patients = 0.637, t168 = 10.7,103

p < 1019; Figure 2G). To test for increased bias, we calculated the Kullback–Leibler (KL) diver-104

gence between the policy, π(Order|Patient), and the default order distribution, P (Order). The105

KL divergence measures the statistical distance between two distributions: the more the policy106

resembles the default order distribution, the smaller the KL divergence. Consistent with theory107

(Figure 2H), the KL divergence decreases with cognitive load (βTotal number of patients = −0.583,108

t168 = −9.30, p < 10−16; Figure 2I).109

The default order distribution adapts to patient characteristics110

One key feature of the theory is that the bias, which arises from the default order distribution,111

should capture statistical regularities in patient characteristics to allow for the efficient use of112

memory. This requires the default order distribution to adapt ; it should change when patient113
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Figure 2: Cognitive load produces bias and noise in decisions. (A) The optimal util-
ity/complexity frontier is lower under higher cognitive load because the same resources are spread
over more patients. For simulation, the utility of patient-specific orders was drawn from a uniform
distribution and averaged over 1,000 replicates. Cognitive load was operationalized as management
of 2 (low load) or 4 (high load) simultaneous patients. (B) For the same policy complexity, the
optimal β parameter is strictly smaller under higher cognitive load. (C) Higher cognitive load and
decreased policy complexity both lead to smaller β resulting in increased noise and bias. (D) We
categorized orders into lab-based orders and other orders and calculated the policy as the first 10
orders placed for patients. We use these empirical distributions to estimate information-theoretic
quantities. (E) Policy complexity decreases with total number of patients in the emergency depart-
ment, our proxy for cognitive load. (F) The theory predicts an increase in conditional entropy as a
function of cognitive load, defined as in panel A. (G) Empirical conditional entropy increases with
total number of patients. (H) The theory predicts a decrease in KL(π(Order|Patient)||P (Order))
with cognitive load due to increased bias towards the default order distribution. (I) Empirical
KL(π(Order|Patient)||P (Order)) decreases with total number of patients. Error bars are SEM.

6



characteristics change. We have previously observed signatures of this adaptation process in well-114

controlled behavioral experiments [13, 18].115
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Figure 3: Default orders adapted to changing patient characteristics during the
COVID pandemic. We split orders into low and high COVID severity dates, defined by the
number of daily COVID cases, and calculated the default order distribution in each condition. For
low and high COVID severity, we calculated the Kullback-Leibler (KL) divergence between the
policy and each of these default order distributions. (A) For low COVID severity dates, the KL di-
vergence between the policy and the default order distribution, KL(π(Order|Patient)||P (Order),
separately for low severity and high severity default orders. (B) The same analysis but for the
policy during high COVID severity dates. All error bars are within-subject SEM.

To test whether providers adapt their default order distributions, we leveraged the COVID116

pandemic, since this resulted in large-scale changes in patient characteristics [19, 20]. Intuitively,117

if more patients present to the emergency department with respiratory concerns, then providers118

should be more likely to order respiratory-related orders across the board. We reasoned that default119

orders would adapt to COVID severity, capturing changes in ordering patterns among providers.120

We calculated terciles of daily COVID cases and split orders into low COVID severity (first tercile)121

and high COVID severity (third tercile) dates between January 1, 2020 and December 31, 2022,122

and calculated the default order distribution under each condition. We predicted that the policies123

implemented by providers on low COVID severity dates would resemble the default orders placed on124

low COVID severity dates. Further, the default orders learned on low COVID dates should provide a125

relatively poor description of orders placed on high COVID severity dates. For low COVID severity126

dates, we calculated the KL divergence twice: once between the policy and low COVID default127

orders, and again between the policy and high COVID default orders. We found a smaller KL128

divergence with low COVID default orders (KL divergence with low COVID default orders (mean129

± within-subject SEM): 0.0891 ± 3.25 × 10−5; KL divergence with high COVID default orders:130

0.0897 ± 3.25×10−5; paired t-test: t42,229 = 8.92, p < 10−18; Figure 3A). We repeated this process131

for high COVID severity dates and found the inverse—the high COVID policy now resembled the132

high COVID default orders (KL divergence with low COVID default orders (mean ± within-subject133

SEM): 0.0891 ± 3.27×10−5; KL divergence with high COVID default orders: 0.0886 ± 3.27×10−5;134

paired t-test: t41,119 = −7.51, p < 10−13; Figure 3B). These findings were exceedingly unlikely to135

be due to chance (difference in KL divergence for low COVID severity dates: 5.81× 10−4, shuffled136

data 95% CI [−1.26 × 10−6, 3.17 × 10−5]; difference in KL divergence for high COVID severity137

dates: −4.91 × 10−4, shuffled data 95% CI [−3.10 × 10−5, 1.00 × 10−6]). These results strongly138

suggest that the default order distribution adapts to changing patient characteristics.139

How do providers adapt the default order distribution? We have previously proposed that the140
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brain learns the default order distribution by incremental updating [13, 18, 21, 22]:141

∆P (Order) ∝ π(Order|Patient)− P (Order). (4)

This update ensures that if an order was recently placed, it is more likely to be chosen again, which142

results in perseveration. Note that perseveration is a consequence of optimal resource-constrained143

decision-making. Our use of the term is technical and does not imply its colloquial, often pejorative,144

connotation. We have observed signatures of such perseveration in well-controlled tasks [18, 22, 23].145
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We predicted increased perseveration under cognitive load, because default orders influence the146

policy more strongly in this regime due to reduced β (Figures 4A,B). Because we are no longer147

calculating information-theoretic quantities, we revert back to the raw order distribution used by148

providers (3,258 unique orders). We do this to ensure minimal preprocessing of the data and149

to assess whether providers repeat the raw orders placed (rather than order categories), which150

is a stronger test of the theory. Consistent with theory, providers perseverate more when there151

are more patients in the emergency department (βTotal number of patients = 0.0228, t2,467,468 = 10.1,152

p < 10−23; Figure 4C), taxing memory. This effect held across a number of control analyses,153

including using different definitions of perseveration, only looking at perseveration to different154

patients, and controlling for the number of orders placed (figure 1A). This is consistent with findings155

from the working memory literature where subjects perseverate more when more items need to be156

remembered [24].157

We next identified a more direct effect of a patient being incorporated into a provider’s mem-158

ory: when the first order for that patient is placed. Prior to the first order, providers are likely159

8



interviewing, assessing, and developing an initial plan for that patient—all events that tax memory.160

The first order should therefore mark when a provider has moved into a state of higher cognitive161

load (Figure 2A). This is indeed what we observe: perseveration increases when the order placed162

is the first order for a patient (βFirst order = 0.264, t2,411,398 = 143, p < 10−100; Figure 4D, 1B).163

We next identified a signature of learning the default order distribution. Because the bias164

reflects continuous incremental adjustments, the tendency to perseverate should increase over time165

[24, 25, 26]. Consistent with this hypothesis, perseveration increases with the time that has elapsed166

since a provider started their shift (βTime since shift start = 0.213, t2,467,468 = 114, p < 10−100; Figure167

4E, 1C).168

Finally, we investigated the effect of memory retention interval, operationalized as the time169

between orders. We reasoned that the longer it has been since a provider placed an order, the170

longer they are likely to have to hold onto information related to the upcoming order. In studies171

of working memory, longer retention intervals tend to increase perseveration [24, 27]. Indeed, we172

found that perseveration increases as the time between orders increases (βTime between orders = 0.190,173

t2,467,468 = 114, p < 10−100; Figure 4F, 1D).174

To ensure the independence of these effects, we fit a logistic mixed effects regression to pre-175

dict perseveration as a function of the previous 4 factors as well as chance levels of perseveration.176

We found that all regression coefficients were positive and significant, confirming that each fac-177

tor contributes to perseveration (βTotal number of patients = 0.0207, t2,411,395 = 9.01, p < 10−18;178

βFirst order = 0.256, t2,411,395 = 138, p < 10−100; βTime since shift start = 0.138, t2,411,395 = 42.0,179

p < 10−100; βTime between orders = 0.0789, t2,411,395 = 26.3, p < 10−100).180

Taken together, we find that medical providers systematically perseverate when placing medical181

orders. Far from a hindrance, this perseveration serves to economize limited cognitive resources.182

Counteracting the effects of cognitive load183

Although our results argue that providers optimally adapt to cognitive load, the resulting bias and184

noise in medical decisions is unwanted from a systems perspective. How then can bias and noise be185

reduced, to limit downstream medical errors? It is recognized that effective teamwork can offset the186

deleterious effects of cognitive fatigue [28, 29, 30, 31, 32], though this introduces miscommunication,187

which lead to medical errors [33, 34, 35, 36]. We therefore sought to quantify the effect of multiple188

providers collaborating on care, to see if and how teamwork improves patient care. Concretely, we189

partitioned the data into instances where one provider placed the first 10 orders for a patient, and190

instances where two or more providers placed these orders (our operationalization of teamwork).191

We found that when multiple providers contribute to patient care, decisions are improved across192

the board. Policy complexity increases across all levels of cognitive load (policy complexity under 1193

provider (mean ± SEM): 0.0906 ± 7.74×10−4; policy complexity under 2 or more providers: 0.116194

± 1.66 × 10−3; two-sample t-test: t338 = −13.9, p < 10−34; Figure 5A). Commensurate with the195

increase in policy complexity, noise and bias both decrease (conditional entropy under 1 provider196

(mean ± SEM): 0.893 ± 7.45 × 10−4; conditional entropy under 2 or more providers: 0.883 ±197

1.80 × 10−3; two-sample t-test: t338 = 5.46, p < 10−7; KL divergence under 1 provider: 0.0908 ±198

7.77 × 10−4; KL divergence under 2 or more providers: 0.116 ± 1.65 × 10−3; two-sample t-test:199

t338 = −13.8, p < 10−34; Figure 5B,C). Teamwork therefore effectively increases the cognitive200

resources available, in service of optimal decision-making.201

Discussion202

Taken together, our work makes the important point that bias and noise in decisions are inevitable203

properties of an optimal, resource-limited system. Importantly, the theory accounts for a subset204

of apparent errors committed by providers. Some errors are clearly attributable to other sources.205

For example, a provider’s distribution of patient-specific orders may be misspecified, resulting in206
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Figure 5: Effects of teamwork on bias and noise. (A) We calculated the policy separately
when 1 provider made all orders and when 2 or more providers made all orders. When multiple
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the inappropriate order being placed even under cognitively ideal conditions. Medical malpractice207

law recognizes these types of errors as a “failure to adhere to the standards of the profession” [37].208

Quantifying the extent to which providers optimize their actions necessitates estimating the under-209

lying reward structure that governs clinician behavior—a line of research currently under develop-210

ment [38, 39, 40]. Our work, however, makes an important distinction: there is a ceiling to the211

performance a provider can attain under a capacity limit.212

We therefore suggest that guidelines focused on interventions to increase cognitive resources or213

minimize cognitive load are likely to have outsized impact, particularly in environments like emer-214

gency departments where cognitive demands are high. For example, interventions aimed at limiting215

crowding in the emergency department [41] may free up cognitive resources for providers, improv-216

ing decision quality. Emergency medicine often requires rapid decision-making (e.g., head imaging217

without a thorough history for suspected stroke), contrasted with the more thorough history and218

physical examination typical in outpatient settings. These differences reflect necessary adaptations219

to situational demands rather than deficiencies in care, highlighting the value of considering cogni-220

tive resources explicitly. Another suggestion is that medical protocols can reify cognitive resources221

as if they were physical resources. Mass casualty protocols, for example, are typically framed in222

terms of physical resource management but implicitly also manage cognitive resources by providing223

simple and rapid triage guidelines to streamline decision-making [42, 43]. Explicitly accounting for224

cognition as a resource may allow systems to interpolate between regimes where cognitive resources225

are rich and where they are depleted, helping improve patient outcomes across varying clinical226
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environments.227

By integrating cognitive costs into formal models of medical decision-making, our work opens228

avenues for designing interventions that enhance decision-making and improve patient outcomes.229

Methods230

Rate-distortion theory: a capacity limit applied to decision-making231

All information processing systems are subject to physical constraints that limit the ability to232

perfectly store and transmit information. These limits place an upper bound on achievable perfor-233

mance [8]. Here, we use rate-distortion theory to formalize decision-making as a constrained opti-234

mization problem that trades off the utility of decisions with the associated cognitive costs [14, 44].235

We consider a decision-maker as a provider implementing a policy, π(Order|Patient), a prob-236

ability distribution that maps patients onto orders (in reinforcement learning, the standard ter-237

minology is an agent using a policy that maps states onto actions). From the perspective of238

rate-distortion theory, providers generate policies by transmitting patient information across a239

capacity-limited channel to generate orders. We define the cognitive cost of decision-making as240

the information rate across this channel: the policy complexity, or the mutual information between241

patients and orders:242

Iπ(Patient;Order) =
∑

Patient

P (Patient)
∑
Order

π(Order|Patient) log
π(Order|Patient)

P (Order)
(5)

where P (Order) =
∑

Patient P (Patient)π(Order|Patient) is the marginal order distribution, which243

we refer to as default orders throughout.244

We assume that this channel is subject to a capacity constraint, C, or an upper bound on the245

policy complexity. According to Shannon’s noisy channel theorem, the minimum expected number246

of bits to errorlessly transmit a signal across a channel is equal to the mutual information. If the247

optimal policy requires more memory than the provider possesses, then the provider must discard248

some patient-specific information to reduce the policy complexity under the capacity limit. The249

optimal policy, π∗ is defined as:250

π∗ = argmax
π

Uπ, subject to Iπ(Patient;Order) ≤ C (6)

where Uπ is the expected utility of the policy π:251

Uπ =
∑

Patient

P (Patient)
∑
Order

π(Order|Patient)Q(Patient,Order) (7)

and Q(Patient,Order) is the expected utility of orders for a given patient, which we refer to as252

patient-specific orders throughout.253

This constrained optimization problem can be be written as an unconstrained optimization254

problem using the following Lagrangian equation:255

π∗ = argmax
π

βUπ − Iπ(Patient;Order)−
∑

Patient

λ(Patient)

(∑
Order

π(Order|Patient)− 1

)
(8)

where β ≥ 0, λ(Patient) ≥ 0 are Lagrange multipliers. The solution to this equation is:256

π(Order|Patient) ∝ exp[β Q(Patient,Order) + logP (Order)] (9)

The optimal policy takes the form of a softmax function, ubiquitous in the reinforcement learning257

literature for modeling both artificial and biological agents. β plays the role of a utility/information258
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trade-off parameter: β units of utility can be “bought” for 1 unit of information. The exact259

relationship between β and policy complexity is given as:260

β−1 =
dUπ

dIπ(Patient;Order)
(10)

which provides a geometric interpretation of β, which is the (inverse) slope of the utility/complexity261

curve—when the slope is shallow, β is high and when the slope is steep, β is small. In Figure 1A,262

at high policy complexity, where dUπ

dIπ(Patient;Order) is shallow, the optimal β is large and the policy263

is largely a function of patient-specific orders, Q(Patient,Order). At low policy complexity, the264

slope is steep and the optimal β is small, meaning default orders, P (Order), dominate the policy.265

Theoretical simulations266

To generate the optimal policy in Figure 1, we define Q(Order, Patient) =

[
1 0
0 1

]
, where rows267

index patients and columns index orders, and compute the optimal policy using the Blahut-Arimoto268

algorithm [45, 46]. Note that this is a toy model to help build intuitions, not a literal model of a269

realistic provider policy.270

To generate the optimal policy in Figure 2A,B, we define Q(Order, Patient) as a 2x2 (Patient271

X Order) distribution for the low cognitive load condition and as a 4x2 distribution for the high272

cognitive load condition. We simulate 2 orders to mimic the 2 order categories used for empirical273

data analysis (lab-based orders vs other orders). For each simulation, we sample from a uniform274

distribution over the interval [0, 1] for each entry of the Q matrix. This captures the intuition275

that the optimal set of orders varies across patients, such that lab-based orders are optimal for276

some patients, other orders are optimal for others, both may be optimal for others, and so on. We277

enforce the constraint that each order should be optimal for at least 1 patient. This prevents the278

optimal policy complexity from being 0 bits, which is highly implausible in practice and therefore a279

poor description of reality. We use the Blahut-Arimoto algorithm to generate the optimal policies280

and repeat this process 1,000 times. We average the relevant quantities (utility/complexity curves,281

β/complexity curves) across simulations to generate the curves in Figure 2A,B.282

We estimate the conditional entropy as:283

H(Order|Patient) =
∑

Patient

P (Patient)
∑
Order

π(Order|Patient) log π(Order|Patient) (11)

and we calculate the KL divergence as:284

KL(π(Order|Patient)||P (Order)) =
∑
Order

π(Order|Patient) log
π(Order|Patient)

P (Order)
(12)

In Figure 2F,G, we report the average conditional entropy and KL divergence across all policies for285

each cognitive load condition (i.e., by marginalizing over policy complexity).286

Emergency department ordering data287

We obtained approval from the Massachusetts General Brigham Institutional Review Board prior288

to conducting this research. We analyzed all non-medication orders placed for patients in the289

Massachusetts General Hospital Emergency Department from July 1, 2019 to June 30, 2024. We290

restricted the dataset to non-medication orders to limit the combinatorial complexity inherent with291

medication-based orders (e.g., different doses, formulations, route of administration, frequency,292

standing vs as-needed). We analyzed the following variable associated with each order: patient en-293

counter ID (unique ID for that specific encounter), provider ID, time of order placement, order type,294

total number of patients in emergency department. The full dataset consisted of 448,129 unique295
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patient encounters, 5,934 unique ordering providers, and 8,942,841 orders (3,258 unique orders).296

We preprocessed the data by grouping all simultaneously-released orders into ‘order batches’ which297

resulted in 2,916,690 order batches. The mean (± SEM) order batch size was 2.67 (± 2.18× 10−3)298

orders, with a median and mode of size 1 (68.6% of all order batches consisted of just 1 order).299

Estimating information-theoretic quantities on medical orders300

To estimate policy complexity, conditional entropy, and KL divergence in Figure 3E,G,I and Figure301

5, we defined the policy, π(Order|Patient), as the first 10 orders placed for a patient, where302

patient was defined by patient encounter ID. We collapsed the 3,258 unique orders into the two303

categories of lab-based orders and other orders to avoid problems with estimating entropy from304

sparse distributions [15, 16]. We estimated the total number of patients as the average number of305

patients in the emergency department over the first 10 orders and rounded down to the nearest306

integer. We ignored patient encounters with fewer than 10 total orders. We ignored all orders past307

the first 10. Because orders were occasionally batched (i.e., multiple orders released simultaneously),308

if a given batch resulted in more than 10 orders being placed for a patient, we randomly discarded309

orders until only 10 orders remained for a patient.310

We computed information-theoretic quantities (Equations 5, 11, and 12) as a function of the311

total number of patients. Specifically, we estimated each quantity for individual values of the total312

number of patients and estimated the default order distribution as P (Order) =
∑

Patient P (Patient)313

π(Order|Patient) (e.g., for 50 patients, then 51 patients, and so on). Since we used the patient en-314

counter ID to define patients, P (Patient) was equiprobable for each analysis. For Figure 2, we did315

this for instances where only 1 provider ordered the first 10 orders, which resulted in 196,153 unique316

patients encounters. For Figure 5, we included instances where 2 or more providers contributed to317

the first 10 orders, which resulted in 89,195 unique patient encounters.318

COVID severity analyses319

To assess how the COVID pandemic affected the default order distribution, we analyzed COVID320

cases in Massachusetts from January 1, 2020 to December 31, 2022, drawn from the Oxford COVID-321

19 Government Response Tracker which compiled cases from open dataset (e.g., Johns Hopkins322

University Coronavirus Resource Center) [47]. Owing to periodic data collection (e.g., once weekly323

reporting of COVID cases at some timepoints), we smoothed the data with a Savitzky-Golay filter324

of span 50 and degree 2. We calculated terciles of COVID cases and defined the first tercile325

as low severity dates and the third tercile as high severity dates. We calculated the default order326

distributions separately for each set of dates. For the shuffled control, we randomly shuffled COVID327

low and COVID high dates and calculated the difference in KL divergence as the KL divergence328

with high severity default orders minus KL divergence with low severity default orders.329

Perseveration analyses330

We use the following iterative update equation to update the marginal order distribution [13, 18,331

21, 22]:332

∆P (Order) = α(π(Order|Patient)− P (Order)), (13)

where α ∈ [0, 1] is a learning rate parameter. To generate the simulated results in Figure 4B,333

we defined Q(Order,Patient) as a 2x2 (Patient x Order) distribution, sampled from a uniform334

distribution over the interval [0, 1] using β = 100 for the low cognitive load condition and β = 1 for335

the high cognitive load condition. P (Order) was initialized as [0.5, 0.5] and we randomly sampled336

from patients (either patient 1 or patient 2) for 1,000 trials. We calculated the policy according337

to Equation 2 and used it to update P (Order) according to Equation 13 using α = 0.03. We338

calculated the probability of repeating an order across all trials to estimate perseveration. We339

repeated this simulation 100 times.340
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In Figure 4, we define perseveration as a binary variable equal to 1 if any order was repeated341

and 0 otherwise.342

To account for chance levels of perseveration, which increases when the order batch size is larger,343

or when the order placed was higher probability, we used the following process. First, we defined IO344

as the set of all orders placed at a particular timepoint. We calculated the probability that no order345

would be repeated as P (no repeat) = (1−
∑

IO
P (IO))

N where P (IO) is the probability of making346

a particular order, drawn from P (Order) and N is the number of orders in the current batch. The347

chance probability of any one order is repeated is therefore P (repeat order) = 1 − P (no repeat).348

Intuitively, if the number of prior orders goes up or the probability of those orders is high (either349

of which increases
∑

IO
P (IO)), or the number of orders in the current batch is large (increasing350

N), then the probability of repeating an order by chance increases. We include this as a regressor351

in all perseveration regression analyses (see Statistical analyses below).352

We calculated shift duration by calculating the cumulative time elapsed from the first order to353

the current order. When the cumulative time elapsed exceeded 16 hours, we defined the end of the354

shift and considered the current order as the start of a new shift. This is a longer duration than355

typical shifts, which we included to allow ample time for post-shift orders to be placed, in the case356

of lengthy passoffs (e.g., multiple codes running at the end of shift requiring a provider’s attention,357

limiting passoff at the assigned time). For all analyses, we only include perseveration within a shift358

(i.e., we ignore the first order of a shift in our analyses).359

For control analyses (Figure 1), we used a different definition of perseveration (fractional),360

instances where perseveration was to different patients, and for instances where the order batch361

size for the prior and current orders was equal to 1. We used a fractional definition of perseveration362

to account for instances where where multiple orders were batched and released simultaneously (in363

Figure 1, perseveration was defined as the fraction of orders that were repeated). We used instances364

where perseveration was to different patients because orders may be repeated for the same patient365

for reasons unrelated to the theory (e.g., because an inadequate blood sample was drawn, requiring366

a duplicate order to be placed for another attempt). We used instances with a batch order size of367

1 for prior and current orders to control for effects related to batch size.368

Statistical analyses369

For all regressions, we standardized all variables by z -scoring, with the exception of the binary370

perseveration variable used as the outcome variable with logistic regressions. For all perseveration371

analyses, we used random effects models which included the fixed effects listed in the text and a372

random intercept per provider. All error bars are SEM unless otherwise reported. We used the373

method of [48] to calculate within-subject SEM for Figure 3. We report a minimum p value of374

10−100.375
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Extended Data Figure 1: Control analyses for perseveration results. The left row sum-
marizes the control analyses for that row. See Materials and Methods for full details. Top row is
the same analysis as in Figure 4. For each analysis, we fit mixed effects models (logistic for binary,
linear for fraction) as a function of the graphed predictor and chance levels of perseveration. The
inset lists the regression coefficient and p value for the graphed predictor. (A) Control analyses for
total number of patients. (B) Control analyses for first order. (C) Control analyses for time since
shift start. (D) Control analyses for time between orders.
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