

Optimal use of limited cognitive resources produces bias and noise in medical decisions

Bilal A. Bari^{1,4*}, Shuhan He^{2,4}, Thomas H. McCoy^{3,4†}, Samuel J. Gershman^{5†}

¹McLean Hospital, Belmont, MA

²Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA

³Department of Psychiatry, Massachusetts General Hospital, Boston, MA

⁴Harvard Medical School, Boston, MA

⁵Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA

*Corresponding author. Email: bbari@mgb.org

†These authors contributed equally to this work.

Keywords: medical decision making; medical errors; resource rationality; reinforcement learning

1 Abstract

2 Medical providers make more errors under cognitive load, often viewed as arising from suboptimal
3 decision-making. This interpretation relies on frameworks that ignore cognitive costs. Here, we
4 offer a fundamentally different perspective that reveals an underlying structure to medical errors:
5 bias (systematic deviations) and noise (variability) are inevitable consequences of optimal decision-
6 making under cognitive resource constraints. We analyze orders placed by emergency department
7 providers and find that cognitive load increases bias and noise, consistent with the optimal al-
8 location of resources. Because providers near-optimally adjust to cognitive demands, this argues
9 that guidelines that increase cognitive resources are necessary to reduce errors. Consistent with
10 this perspective, bias and noise are minimized when multiple providers contribute to patient care.
11 These findings have implications for optimizing medical care.

12 **Introduction**

13 Medical providers make decisions under significant cognitive load. They contend with high patient
14 volumes, vast amounts of information, and limited time. It stands to reason that these cognitive
15 factors should influence decision-making, prompting providers to adopt strategies that balance
16 the utility of their decisions with cognitive costs. It is well established that cognitive fatigue
17 leads providers to adopt strategies that lead to medical errors [1, 2, 3, 4, 5, 6]. This has led to
18 the suggestion that the strategies employed by medical providers are strictly suboptimal [7], a
19 statement based on normative frameworks that ignore cognitive costs.

20 Cognitive costs cannot, however, be ignored [8]. Accounting for these costs has been essential in
21 explaining phenomena across fields ranging from neuroscience to moral judgment. It is therefore un-
22 clear whether providers employ decision-making strategies that are optimized for efficient memory
23 use under cognitive constraints. In other words, how *should* providers adapt to demands on cogni-
24 tion and do their decision-making patterns follow these principles? Establishing this understanding
25 is critical, as it provides insight into the source of medical errors and can inform interventions to
26 support medical decision-making.

27 To address this question, we formalize the notion of optimal decision-making under cognitive
28 resource constraints. We turn to rate-distortion theory, which analyzes how constraints on informa-
29 tion transmission across a noisy channel affect distortions of input signals. Rate-distortion theory
30 has been used to understand how a variety of human behavioral phenomena arise from information
31 capacity limits [9, 10, 11, 12, 13]. Here, we use rate-distortion theory to model decision-making as
32 a capacity-limited channel [14]. To test the theory’s relevance in natural environments, we focus on
33 real-world orders placed by medical providers in the emergency department, a setting with large
34 shift-to-shift variation in patient volume that offers a natural setting to observe changes in cognitive
35 load.

36 Consistent with the optimal use of limited resources, we find that medical decisions tend towards
37 increased bias (systematic deviations) and noise (variability) as cognitive load increases. Consistent
38 with theory, bias is not constant but adapts according to patient characteristics. A unique pre-
39 diction is that adaptation produces perseveration—a tendency to repeat orders—which represents
40 an efficient strategy to conserve resources. Across four independent measures of cognitive load,
41 we confirm a relationship between cognitive load and perseveration. Finally, we show that bias
42 and noise are minimized when multiple providers contribute to patient orders. This suggests that
43 collaborative decision-making may mitigate the effects of cognitive load.

44 **Results**

45 **Decision-making as a capacity-limited channel**

46 We model each provider as a distribution over orders conditional on the patient (Figure 1A), which
47 we term the *policy*, $\pi(\text{Order}|\text{Patient})$. Throughout this manuscript, ‘policy’ is a technical term in
48 reinforcement learning, referring to a provider’s *internal* strategy for selecting actions, rather than
49 an *externally* imposed set of guidelines, as the term is typically used. The policy is constrained
50 by an upper bound on the mutual information between patients and orders, the *policy complexity*
51 $I^\pi(\text{Patient}; \text{Order})$, which defines the amount of memory needed to encode the policy; the more
52 orders depend on patient-specific characteristics, the greater the policy complexity, and the more
53 memory required to store that policy. The optimal policy maximizes expected utility U^π subject
54 to the capacity constraint $I^\pi(\text{Patient}; \text{Order}) \leq C$, which can be reformulated as:

$$\pi^* = \underset{\pi}{\operatorname{argmax}} \beta U^\pi - I^\pi(\text{Patient}; \text{Order}), \quad (1)$$

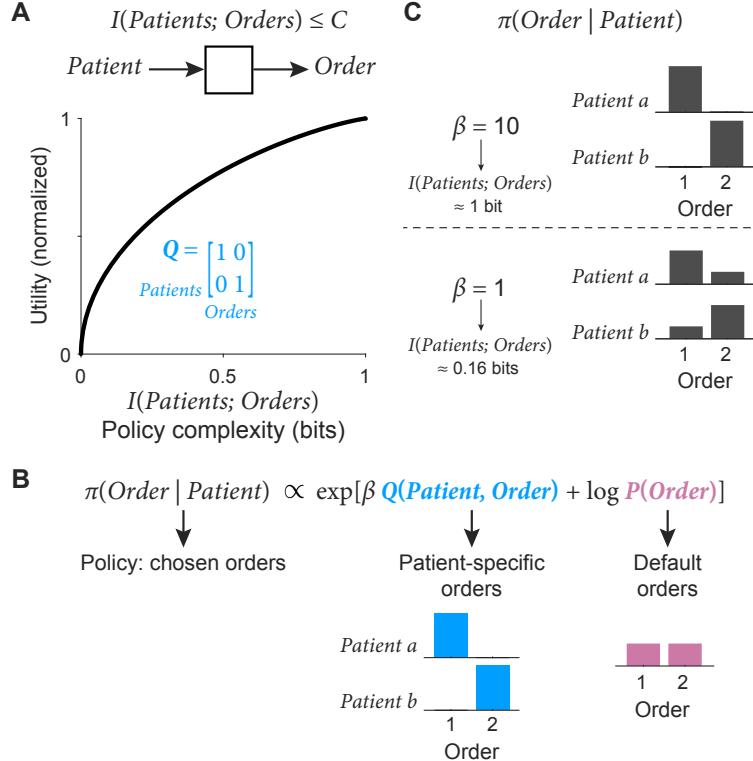


Figure 1: Decision-making modeled as a capacity-limited channel. (A) Patient representations are transmitted through a capacity-limited information channel to produce policy π , a conditional distribution of orders for a given patient. Given assumed utilities of patient-specific orders (blue inset), rate-distortion theory provides the optimal policy which can be used to trace out a utility/complexity frontier (black line). Each point on the frontier corresponds to a different choice of trade-off parameter β . (B) The optimal policy is a softmax function, seen ubiquitously in the reinforcement learning literature. It consists of two factors: patient-specific orders, $Q(Patient, Order)$, and default orders, $P(Order)$. (C) The parameter β controls the utility/information trade-off. When β is large (top panel), the policy results in more patient-specific orders but requires more memory (here, 1 bit). When β is small (bottom panel), the policy results in more default orders but require less memory (here, ≈ 0.16 bits). This results in noisier policies that are biased towards default orders.

55 where $\beta \geq 0$ is a trade-off parameter implicitly reflecting the capacity constraint C . The advantage
 56 of this formulation is that the optimal capacity-limited policy can be expressed explicitly:

$$\pi(Order|Patient) \propto \exp[\beta Q(Patient, Order) + \log P(Order)]. \quad (2)$$

57 The optimal policy is a function of two terms (Figure 1B): the utility of patient-specific orders,
 58 $Q(Patient, Order)$, and the default (marginal) probability of orders,

$$P(Order) = \sum_{Patient} P(Patient)\pi(Order|Patient). \quad (3)$$

59 The expected utility is given by $U^\pi = \mathbb{E}[Q(Patient, Order)|\pi]$.

60 The trade-off between utility (which we seek to maximize) and policy complexity (the memory
 61 cost that we seek to minimize) is dictated by β . When β is large, the policy is strongly dictated
 62 by patient-specific orders, resulting in a policy with high utility and high policy complexity, ne-
 63 cessitating more memory (Figure 1C). This is the solution when memory constraints are ignored.
 64 At the other extreme, when β is small, the policy is strongly dictated by the default order distri-
 65 bution, resulting in a policy with comparatively lower utility but with the benefit of demanding

66 less memory—what we term *policy compression* [14]. Intermediate β values interpolate between
67 these two regimes, mixing patient-specific orders and default orders to generate the policy. This
68 generates the utility/complexity frontier in Figure 1A, in which utility monotonically increases with
69 policy complexity.

70 We sought to understand how cognitive load affects the optimal policy. In Figure 2A, we
71 present a toy example where we define cognitive load as the number of concurrent patients that a
72 provider must manage. Consistent with intuition, when a resource-limited provider manages more
73 patients, the utility of care diminishes slightly, because the same memory must now be spread
74 across more patients. Figure 2B highlights how this arises: regardless of the provider’s policy
75 complexity, the optimal β parameter is always smaller under higher cognitive load. This has two
76 critical consequences (Figure 2C). First, decreased β produces a smaller reliance on patient-specific
77 orders, which makes the policy more random. We can see this in Figure 1C, where the policy under
78 smaller β has higher entropy (i.e., increased randomness). Second, decreased β produces a greater
79 reliance on default orders, which introduces bias. This can again be observed in Figure 1C, where
80 the policy is biased towards the default order distribution.

81 Policy compression in the emergency department

82 To identify signatures of noise and bias in medical decisions, we analyzed orders placed by medical
83 providers over a 5-year period in an emergency department serving a major metropolitan area. This
84 dataset consisted of 5,934 providers placing approximately 9 million orders across 448,129 patient
85 encounters. Owing to well-known problems with estimating information-theoretic quantities from
86 sparse distributions [15, 16], we collapsed the 3,258 unique orders into two categories: laboratory-
87 based orders and other orders. This yielded a near maximal entropy distribution ($P(\text{Labs}) = 0.554$,
88 $P(\text{Other}) = 0.446$), ideal for calculating information-theoretic quantities [17]. For each patient, we
89 calculated the policy based on the first 10 orders placed for that patient (Figure 2D). We did this
90 to ensure information-theoretic quantities were being estimated on similar distributions for each
91 patient. We calculated the policy exclusively for instances where only one provider placed all 10
92 orders because we are interested in the cognitive properties of individual providers.

93 Because the electronic medical record we queried does not record the number of concurrent pa-
94 tients under a provider’s care, we operationalized cognitive load as the total number of patients in
95 the emergency department. Intuitively, if there are more overall patients in the emergency depart-
96 ment, then there will be an increase in the average number of patients per provider. We found that
97 policy complexity decreases with cognitive load ($\beta_{\text{Total number of patients}} = -0.581$, $t_{168} = -9.26$, $p <$
98 10^{-16} ; Figure 2E) consistent with the idea that cognitive resources are stripped as the emergency
99 department becomes crowded. According to the theory, both increased cognitive load in a busy
100 emergency department and reduced policy complexity lead to a decreased β parameter, which in-
101 creases both noise and bias. To test whether decisions become noisier, we estimated the conditional
102 entropy of the policy, which quantifies the randomness of the policy. Consistent with theory (Figure
103 2F), conditional entropy increases with cognitive load ($\beta_{\text{Total number of patients}} = 0.637$, $t_{168} = 10.7$,
104 $p < 10^{19}$; Figure 2G). To test for increased bias, we calculated the Kullback–Leibler (KL) diver-
105 gence between the policy, $\pi(\text{Order}|\text{Patient})$, and the default order distribution, $P(\text{Order})$. The
106 KL divergence measures the statistical distance between two distributions: the more the policy
107 resembles the default order distribution, the smaller the KL divergence. Consistent with theory
108 (Figure 2H), the KL divergence decreases with cognitive load ($\beta_{\text{Total number of patients}} = -0.583$,
109 $t_{168} = -9.30$, $p < 10^{-16}$; Figure 2I).

110 The default order distribution adapts to patient characteristics

111 One key feature of the theory is that the bias, which arises from the default order distribution,
112 should capture statistical regularities in patient characteristics to allow for the efficient use of
113 memory. This requires the default order distribution to *adapt*; it should change when patient

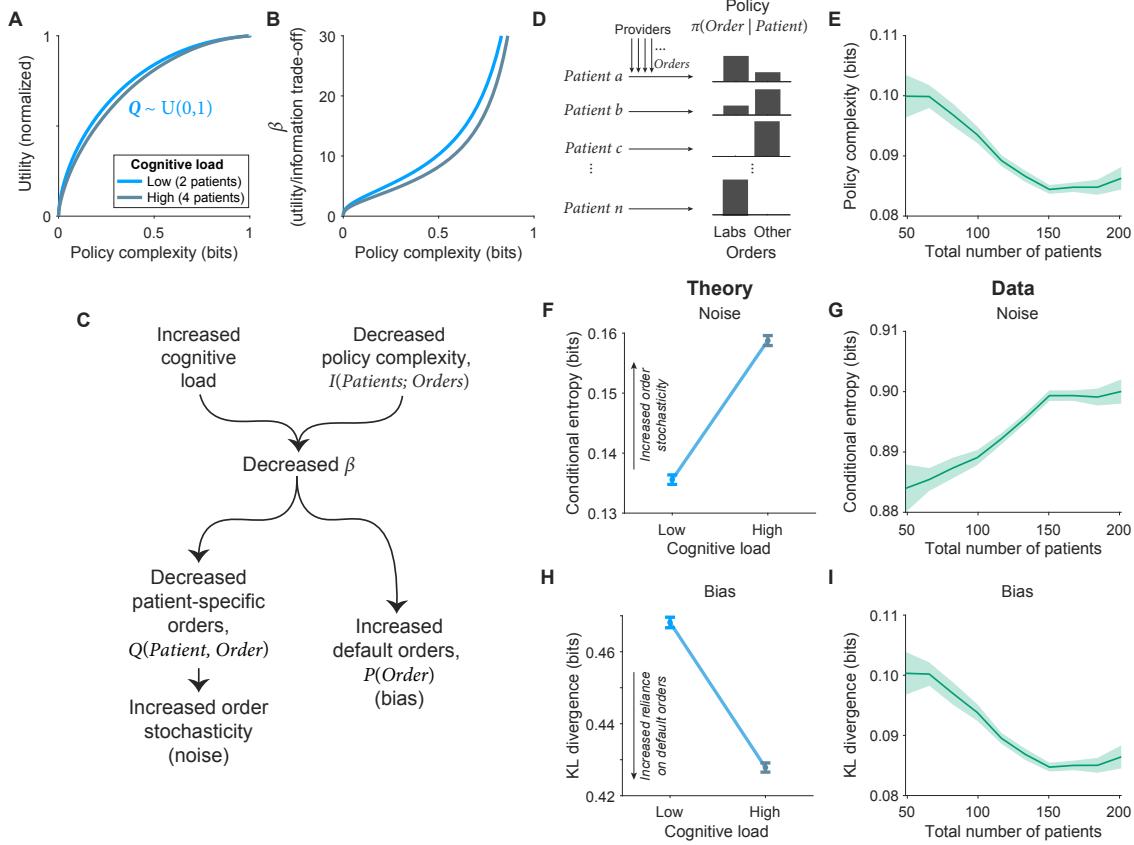


Figure 2: Cognitive load produces bias and noise in decisions. (A) The optimal utility/complexity frontier is lower under higher cognitive load because the same resources are spread over more patients. For simulation, the utility of patient-specific orders was drawn from a uniform distribution and averaged over 1,000 replicates. Cognitive load was operationalized as management of 2 (low load) or 4 (high load) simultaneous patients. (B) For the same policy complexity, the optimal β parameter is strictly smaller under higher cognitive load. (C) Higher cognitive load and decreased policy complexity both lead to smaller β resulting in increased noise and bias. (D) We categorized orders into lab-based orders and other orders and calculated the policy as the first 10 orders placed for patients. We use these empirical distributions to estimate information-theoretic quantities. (E) Policy complexity decreases with total number of patients in the emergency department, our proxy for cognitive load. (F) The theory predicts an increase in conditional entropy as a function of cognitive load, defined as in panel A. (G) Empirical conditional entropy increases with total number of patients. (H) The theory predicts a decrease in $KL(\pi(Order|Patient)||P(Order))$ with cognitive load due to increased bias towards the default order distribution. (I) Empirical $KL(\pi(Order|Patient)||P(Order))$ decreases with total number of patients. Error bars are SEM.

114 characteristics change. We have previously observed signatures of this adaptation process in well-
 115 controlled behavioral experiments [13, 18].

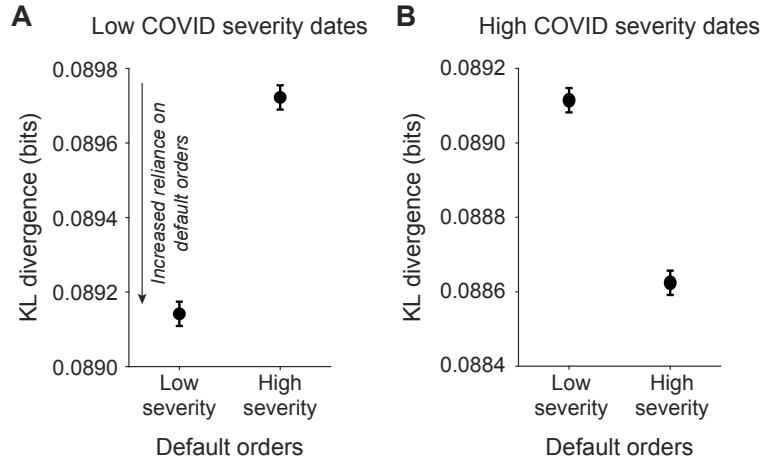


Figure 3: Default orders adapted to changing patient characteristics during the COVID pandemic. We split orders into low and high COVID severity dates, defined by the number of daily COVID cases, and calculated the default order distribution in each condition. For low and high COVID severity, we calculated the Kullback-Leibler (KL) divergence between the policy and each of these default order distributions. **(A)** For low COVID severity dates, the KL divergence between the policy and the default order distribution, $KL(\pi(Order|Patient)||P(Order))$, separately for low severity and high severity default orders. **(B)** The same analysis but for the policy during high COVID severity dates. All error bars are within-subject SEM.

116 To test whether providers adapt their default order distributions, we leveraged the COVID
 117 pandemic, since this resulted in large-scale changes in patient characteristics [19, 20]. Intuitively,
 118 if more patients present to the emergency department with respiratory concerns, then providers
 119 should be more likely to order respiratory-related orders across the board. We reasoned that default
 120 orders would adapt to COVID severity, capturing changes in ordering patterns among providers.
 121 We calculated terciles of daily COVID cases and split orders into low COVID severity (first tercile)
 122 and high COVID severity (third tercile) dates between January 1, 2020 and December 31, 2022,
 123 and calculated the default order distribution under each condition. We predicted that the policies
 124 implemented by providers on low COVID severity dates would resemble the default orders placed on
 125 low COVID severity dates. Further, the default orders learned on low COVID dates should provide a
 126 relatively poor description of orders placed on high COVID severity dates. For low COVID severity
 127 dates, we calculated the KL divergence twice: once between the policy and low COVID default
 128 orders, and again between the policy and high COVID default orders. We found a smaller KL
 129 divergence with low COVID default orders (KL divergence with low COVID default orders (mean
 130 \pm within-subject SEM): $0.0891 \pm 3.25 \times 10^{-5}$; KL divergence with high COVID default orders:
 131 $0.0897 \pm 3.25 \times 10^{-5}$; paired t -test: $t_{42,229} = 8.92, p < 10^{-18}$; Figure 3A). We repeated this process
 132 for high COVID severity dates and found the inverse—the high COVID policy now resembled the
 133 high COVID default orders (KL divergence with low COVID default orders (mean \pm within-subject
 134 SEM): $0.0891 \pm 3.27 \times 10^{-5}$; KL divergence with high COVID default orders: $0.0886 \pm 3.27 \times 10^{-5}$;
 135 paired t -test: $t_{41,119} = -7.51, p < 10^{-13}$; Figure 3B). These findings were exceedingly unlikely to
 136 be due to chance (difference in KL divergence for low COVID severity dates: 5.81×10^{-4} , shuffled
 137 data 95% CI $[-1.26 \times 10^{-6}, 3.17 \times 10^{-5}]$; difference in KL divergence for high COVID severity
 138 dates: -4.91×10^{-4} , shuffled data 95% CI $[-3.10 \times 10^{-5}, 1.00 \times 10^{-6}]$). These results strongly
 139 suggest that the default order distribution adapts to changing patient characteristics.

140 How do providers adapt the default order distribution? We have previously proposed that the

141 brain learns the default order distribution by incremental updating [13, 18, 21, 22]:

$$\Delta P(Order) \propto \pi(Order | Patient) - P(Order). \quad (4)$$

142 This update ensures that if an order was recently placed, it is more likely to be chosen again, which
 143 results in perseveration. Note that perseveration is a consequence of optimal resource-constrained
 144 decision-making. Our use of the term is technical and does not imply its colloquial, often pejorative,
 145 connotation. We have observed signatures of such perseveration in well-controlled tasks [18, 22, 23].

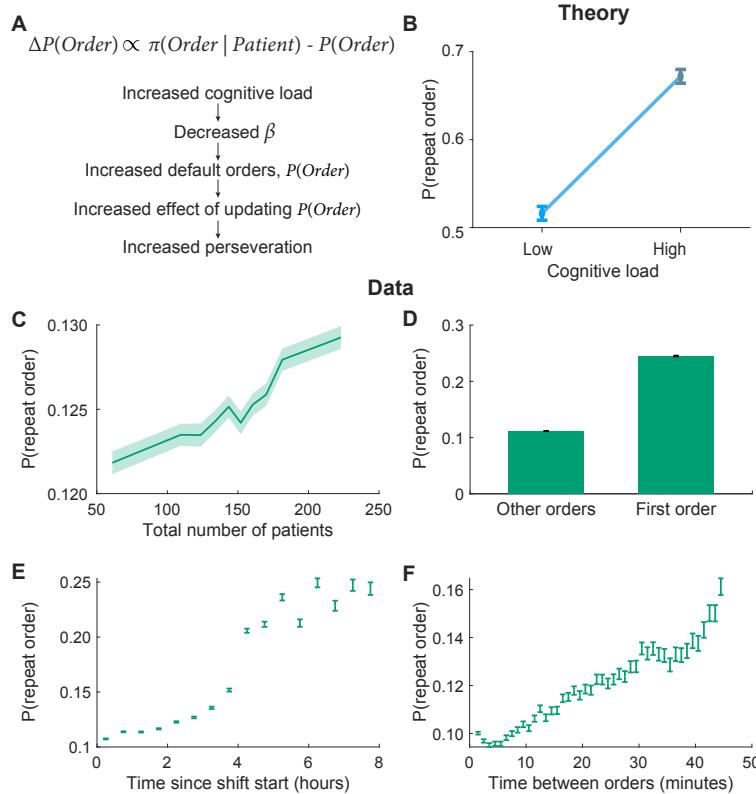


Figure 4: Adaptation of the default order distribution produces perseveration. (A) An iterative algorithm for updating the default order distribution produces perseveration (the tendency to repeat orders), which is magnified under increased cognitive load. (B) The theory predicts increased perseveration under increased cognitive load. (C-F) Perseveration increases with the total number of patients in the emergency department (C), for the first order placed for a patient (D), with time in shift (E), and with time between orders (F). Error bars are SEM.

146 We predicted increased perseveration under cognitive load, because default orders influence the
 147 policy more strongly in this regime due to reduced β (Figures 4A,B). Because we are no longer
 148 calculating information-theoretic quantities, we revert back to the raw order distribution used by
 149 providers (3,258 unique orders). We do this to ensure minimal preprocessing of the data and
 150 to assess whether providers repeat the raw orders placed (rather than order categories), which
 151 is a stronger test of the theory. Consistent with theory, providers persevere more when there
 152 are more patients in the emergency department ($\beta_{\text{Total number of patients}} = 0.0228$, $t_{2,467,468} = 10.1$,
 153 $p < 10^{-23}$; Figure 4C), taxing memory. This effect held across a number of control analyses,
 154 including using different definitions of perseveration, only looking at perseveration to different
 155 patients, and controlling for the number of orders placed (figure 1A). This is consistent with findings
 156 from the working memory literature where subjects persevere more when more items need to be
 157 remembered [24].

158 We next identified a more direct effect of a patient being incorporated into a provider's mem-
 159 ory: when the first order for that patient is placed. Prior to the first order, providers are likely

160 interviewing, assessing, and developing an initial plan for that patient—all events that tax memory.
161 The first order should therefore mark when a provider has moved into a state of higher cognitive
162 load (Figure 2A). This is indeed what we observe: perseveration increases when the order placed
163 is the first order for a patient ($\beta_{\text{First order}} = 0.264$, $t_{2,411,398} = 143$, $p < 10^{-100}$; Figure 4D, 1B).

164 We next identified a signature of learning the default order distribution. Because the bias
165 reflects continuous incremental adjustments, the tendency to perseverate should increase over time
166 [24, 25, 26]. Consistent with this hypothesis, perseveration increases with the time that has elapsed
167 since a provider started their shift ($\beta_{\text{Time since shift start}} = 0.213$, $t_{2,467,468} = 114$, $p < 10^{-100}$; Figure
168 4E, 1C).

169 Finally, we investigated the effect of memory retention interval, operationalized as the time
170 between orders. We reasoned that the longer it has been since a provider placed an order, the
171 longer they are likely to have to hold onto information related to the upcoming order. In studies
172 of working memory, longer retention intervals tend to increase perseveration [24, 27]. Indeed, we
173 found that perseveration increases as the time between orders increases ($\beta_{\text{Time between orders}} = 0.190$,
174 $t_{2,467,468} = 114$, $p < 10^{-100}$; Figure 4F, 1D).

175 To ensure the independence of these effects, we fit a logistic mixed effects regression to pre-
176 dict perseveration as a function of the previous 4 factors as well as chance levels of perseveration.
177 We found that all regression coefficients were positive and significant, confirming that each fac-
178 tor contributes to perseveration ($\beta_{\text{Total number of patients}} = 0.0207$, $t_{2,411,395} = 9.01$, $p < 10^{-18}$;
179 $\beta_{\text{First order}} = 0.256$, $t_{2,411,395} = 138$, $p < 10^{-100}$; $\beta_{\text{Time since shift start}} = 0.138$, $t_{2,411,395} = 42.0$,
180 $p < 10^{-100}$; $\beta_{\text{Time between orders}} = 0.0789$, $t_{2,411,395} = 26.3$, $p < 10^{-100}$).

181 Taken together, we find that medical providers systematically persevere when placing medical
182 orders. Far from a hindrance, this perseveration serves to economize limited cognitive resources.

183 Counteracting the effects of cognitive load

184 Although our results argue that providers optimally adapt to cognitive load, the resulting bias and
185 noise in medical decisions is unwanted from a systems perspective. How then can bias and noise be
186 reduced, to limit downstream medical errors? It is recognized that effective teamwork can offset the
187 deleterious effects of cognitive fatigue [28, 29, 30, 31, 32], though this introduces miscommunication,
188 which lead to medical errors [33, 34, 35, 36]. We therefore sought to quantify the effect of multiple
189 providers collaborating on care, to see if and how teamwork improves patient care. Concretely, we
190 partitioned the data into instances where one provider placed the first 10 orders for a patient, and
191 instances where two or more providers placed these orders (our operationalization of teamwork).
192 We found that when multiple providers contribute to patient care, decisions are improved across
193 the board. Policy complexity increases across all levels of cognitive load (policy complexity under 1
194 provider (mean \pm SEM): $0.0906 \pm 7.74 \times 10^{-4}$; policy complexity under 2 or more providers: 0.116
195 $\pm 1.66 \times 10^{-3}$; two-sample t -test: $t_{338} = -13.9$, $p < 10^{-34}$; Figure 5A). Commensurate with the
196 increase in policy complexity, noise and bias both decrease (conditional entropy under 1 provider
197 (mean \pm SEM): $0.893 \pm 7.45 \times 10^{-4}$; conditional entropy under 2 or more providers: $0.883 \pm$
198 1.80×10^{-3} ; two-sample t -test: $t_{338} = 5.46$, $p < 10^{-7}$; KL divergence under 1 provider: $0.0908 \pm$
199 7.77×10^{-4} ; KL divergence under 2 or more providers: $0.116 \pm 1.65 \times 10^{-3}$; two-sample t -test:
200 $t_{338} = -13.8$, $p < 10^{-34}$; Figure 5B,C). Teamwork therefore effectively increases the cognitive
201 resources available, in service of optimal decision-making.

202 Discussion

203 Taken together, our work makes the important point that bias and noise in decisions are inevitable
204 properties of an optimal, resource-limited system. Importantly, the theory accounts for a subset
205 of apparent errors committed by providers. Some errors are clearly attributable to other sources.
206 For example, a provider's distribution of patient-specific orders may be misspecified, resulting in

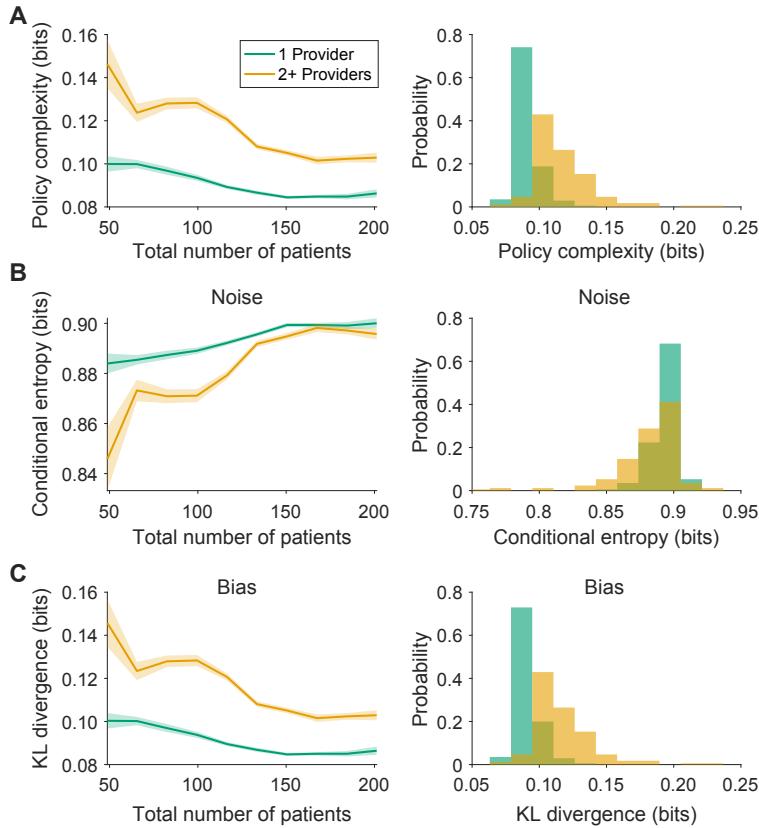


Figure 5: Effects of teamwork on bias and noise. (A) We calculated the policy separately when 1 provider made all orders and when 2 or more providers made all orders. When multiple providers contribute to orders, the policy complexity increases. (B) The conditional entropy, an estimate of the stochasticity of the policy, decreases when multiple providers contribute to orders. (C) Bias, estimated as $KL(\pi(Order|Patient)||P(Order))$, decreases (larger KL divergence) when multiple providers contribute to orders. Error bars are SEM.

207 the inappropriate order being placed even under cognitively ideal conditions. Medical malpractice
 208 law recognizes these types of errors as a “failure to adhere to the standards of the profession” [37].
 209 Quantifying the extent to which providers optimize their actions necessitates estimating the under-
 210 lying reward structure that governs clinician behavior—a line of research currently under develop-
 211 ment [38, 39, 40]. Our work, however, makes an important distinction: there is a ceiling to the
 212 performance a provider can attain under a capacity limit.

213 We therefore suggest that guidelines focused on interventions to increase cognitive resources or
 214 minimize cognitive load are likely to have outsized impact, particularly in environments like emer-
 215 gency departments where cognitive demands are high. For example, interventions aimed at limiting
 216 crowding in the emergency department [41] may free up cognitive resources for providers, improv-
 217 ing decision quality. Emergency medicine often requires rapid decision-making (e.g., head imaging
 218 without a thorough history for suspected stroke), contrasted with the more thorough history and
 219 physical examination typical in outpatient settings. These differences reflect necessary adaptations
 220 to situational demands rather than deficiencies in care, highlighting the value of considering cogni-
 221 tive resources explicitly. Another suggestion is that medical protocols can reify cognitive resources
 222 as if they were physical resources. Mass casualty protocols, for example, are typically framed in
 223 terms of physical resource management but implicitly also manage cognitive resources by providing
 224 simple and rapid triage guidelines to streamline decision-making [42, 43]. Explicitly accounting for
 225 cognition as a resource may allow systems to interpolate between regimes where cognitive resources
 226 are rich and where they are depleted, helping improve patient outcomes across varying clinical

227 environments.

228 By integrating cognitive costs into formal models of medical decision-making, our work opens
229 avenues for designing interventions that enhance decision-making and improve patient outcomes.

230 Methods

231 Rate-distortion theory: a capacity limit applied to decision-making

232 All information processing systems are subject to physical constraints that limit the ability to
233 perfectly store and transmit information. These limits place an upper bound on achievable perfor-
234 mance [8]. Here, we use rate-distortion theory to formalize decision-making as a constrained opti-
235 mization problem that trades off the utility of decisions with the associated cognitive costs [14, 44].

236 We consider a decision-maker as a provider implementing a policy, $\pi(Order|Patient)$, a prob-
237 ability distribution that maps patients onto orders (in reinforcement learning, the standard ter-
238 minology is an *agent* using a policy that maps *states* onto *actions*). From the perspective of
239 rate-distortion theory, providers generate policies by transmitting patient information across a
240 capacity-limited channel to generate orders. We define the cognitive cost of decision-making as
241 the information rate across this channel: the *policy complexity*, or the mutual information between
242 patients and orders:

$$I^\pi(Patient; Order) = \sum_{Patient} P(Patient) \sum_{Order} \pi(Order|Patient) \log \frac{\pi(Order|Patient)}{P(Order)} \quad (5)$$

243 where $P(Order) = \sum_{Patient} P(Patient)\pi(Order|Patient)$ is the marginal order distribution, which
244 we refer to as default orders throughout.

245 We assume that this channel is subject to a capacity constraint, C , or an upper bound on the
246 policy complexity. According to Shannon's noisy channel theorem, the minimum expected number
247 of bits to errorlessly transmit a signal across a channel is equal to the mutual information. If the
248 optimal policy requires more memory than the provider possesses, then the provider must discard
249 some patient-specific information to reduce the policy complexity under the capacity limit. The
250 optimal policy, π^* is defined as:

$$\pi^* = \operatorname{argmax}_\pi U^\pi, \text{ subject to } I^\pi(Patient; Order) \leq C \quad (6)$$

251 where U^π is the expected utility of the policy π :

$$U^\pi = \sum_{Patient} P(Patient) \sum_{Order} \pi(Order|Patient) Q(Patient, Order) \quad (7)$$

252 and $Q(Patient, Order)$ is the expected utility of orders for a given patient, which we refer to as
253 patient-specific orders throughout.

254 This constrained optimization problem can be be written as an unconstrained optimization
255 problem using the following Lagrangian equation:

$$\pi^* = \operatorname{argmax}_\pi \beta U^\pi - I^\pi(Patient; Order) - \sum_{Patient} \lambda(Patient) \left(\sum_{Order} \pi(Order|Patient) - 1 \right) \quad (8)$$

256 where $\beta \geq 0$, $\lambda(Patient) \geq 0$ are Lagrange multipliers. The solution to this equation is:

$$\pi(Order|Patient) \propto \exp[\beta Q(Patient, Order) + \log P(Order)] \quad (9)$$

257 The optimal policy takes the form of a softmax function, ubiquitous in the reinforcement learning
258 literature for modeling both artificial and biological agents. β plays the role of a utility/information

259 trade-off parameter: β units of utility can be “bought” for 1 unit of information. The exact
 260 relationship between β and policy complexity is given as:

$$\beta^{-1} = \frac{dU^\pi}{dI^\pi(Patient; Order)} \quad (10)$$

261 which provides a geometric interpretation of β , which is the (inverse) slope of the utility/complexity
 262 curve—when the slope is shallow, β is high and when the slope is steep, β is small. In Figure 1A,
 263 at high policy complexity, where $\frac{dU^\pi}{dI^\pi(Patient; Order)}$ is shallow, the optimal β is large and the policy
 264 is largely a function of patient-specific orders, $Q(Patient, Order)$. At low policy complexity, the
 265 slope is steep and the optimal β is small, meaning default orders, $P(Order)$, dominate the policy.

266 **Theoretical simulations**

267 To generate the optimal policy in Figure 1, we define $Q(Order, Patient) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, where rows
 268 index patients and columns index orders, and compute the optimal policy using the Blahut-Arimoto
 269 algorithm [45, 46]. Note that this is a toy model to help build intuitions, not a literal model of a
 270 realistic provider policy.

271 To generate the optimal policy in Figure 2A,B, we define $Q(Order, Patient)$ as a 2x2 (Patient
 272 X Order) distribution for the low cognitive load condition and as a 4x2 distribution for the high
 273 cognitive load condition. We simulate 2 orders to mimic the 2 order categories used for empirical
 274 data analysis (lab-based orders vs other orders). For each simulation, we sample from a uniform
 275 distribution over the interval [0, 1] for each entry of the Q matrix. This captures the intuition
 276 that the optimal set of orders varies across patients, such that lab-based orders are optimal for
 277 some patients, other orders are optimal for others, both may be optimal for others, and so on. We
 278 enforce the constraint that each order should be optimal for at least 1 patient. This prevents the
 279 optimal policy complexity from being 0 bits, which is highly implausible in practice and therefore a
 280 poor description of reality. We use the Blahut-Arimoto algorithm to generate the optimal policies
 281 and repeat this process 1,000 times. We average the relevant quantities (utility/complexity curves,
 282 β /complexity curves) across simulations to generate the curves in Figure 2A,B.

283 We estimate the conditional entropy as:

$$H(Order|Patient) = \sum_{Patient} P(Patient) \sum_{Order} \pi(Order|Patient) \log \pi(Order|Patient) \quad (11)$$

284 and we calculate the KL divergence as:

$$KL(\pi(Order|Patient) || P(Order)) = \sum_{Order} \pi(Order|Patient) \log \frac{\pi(Order|Patient)}{P(Order)} \quad (12)$$

285 In Figure 2F,G, we report the average conditional entropy and KL divergence across all policies for
 286 each cognitive load condition (i.e., by marginalizing over policy complexity).

287 **Emergency department ordering data**

288 We obtained approval from the Massachusetts General Brigham Institutional Review Board prior
 289 to conducting this research. We analyzed all non-medication orders placed for patients in the
 290 Massachusetts General Hospital Emergency Department from July 1, 2019 to June 30, 2024. We
 291 restricted the dataset to non-medication orders to limit the combinatorial complexity inherent with
 292 medication-based orders (e.g., different doses, formulations, route of administration, frequency,
 293 standing vs as-needed). We analyzed the following variable associated with each order: patient en-
 294 counter ID (unique ID for that specific encounter), provider ID, time of order placement, order type,
 295 total number of patients in emergency department. The full dataset consisted of 448,129 unique

296 patient encounters, 5,934 unique ordering providers, and 8,942,841 orders (3,258 unique orders).
297 We preprocessed the data by grouping all simultaneously-released orders into ‘order batches’ which
298 resulted in 2,916,690 order batches. The mean (\pm SEM) order batch size was 2.67 ($\pm 2.18 \times 10^{-3}$)
299 orders, with a median and mode of size 1 (68.6% of all order batches consisted of just 1 order).

300 **Estimating information-theoretic quantities on medical orders**

301 To estimate policy complexity, conditional entropy, and KL divergence in Figure 3E,G,I and Figure
302 5, we defined the policy, $\pi(\text{Order}|\text{Patient})$, as the first 10 orders placed for a patient, where
303 patient was defined by patient encounter ID. We collapsed the 3,258 unique orders into the two
304 categories of lab-based orders and other orders to avoid problems with estimating entropy from
305 sparse distributions [15, 16]. We estimated the total number of patients as the average number of
306 patients in the emergency department over the first 10 orders and rounded down to the nearest
307 integer. We ignored patient encounters with fewer than 10 total orders. We ignored all orders past
308 the first 10. Because orders were occasionally batched (i.e., multiple orders released simultaneously),
309 if a given batch resulted in more than 10 orders being placed for a patient, we randomly discarded
310 orders until only 10 orders remained for a patient.

311 We computed information-theoretic quantities (Equations 5, 11, and 12) as a function of the
312 total number of patients. Specifically, we estimated each quantity for individual values of the total
313 number of patients and estimated the default order distribution as $P(\text{Order}) = \sum_{\text{Patient}} P(\text{Patient})$
314 $\pi(\text{Order}|\text{Patient})$ (e.g., for 50 patients, then 51 patients, and so on). Since we used the patient en-
315 counter ID to define patients, $P(\text{Patient})$ was equiprobable for each analysis. For Figure 2, we did
316 this for instances where only 1 provider ordered the first 10 orders, which resulted in 196,153 unique
317 patients encounters. For Figure 5, we included instances where 2 or more providers contributed to
318 the first 10 orders, which resulted in 89,195 unique patient encounters.

319 **COVID severity analyses**

320 To assess how the COVID pandemic affected the default order distribution, we analyzed COVID
321 cases in Massachusetts from January 1, 2020 to December 31, 2022, drawn from the Oxford COVID-
322 19 Government Response Tracker which compiled cases from open dataset (e.g., Johns Hopkins
323 University Coronavirus Resource Center) [47]. Owing to periodic data collection (e.g., once weekly
324 reporting of COVID cases at some timepoints), we smoothed the data with a Savitzky-Golay filter
325 of span 50 and degree 2. We calculated terciles of COVID cases and defined the first tercile
326 as low severity dates and the third tercile as high severity dates. We calculated the default order
327 distributions separately for each set of dates. For the shuffled control, we randomly shuffled COVID
328 low and COVID high dates and calculated the difference in KL divergence as the KL divergence
329 with high severity default orders minus KL divergence with low severity default orders.

330 **Perseveration analyses**

331 We use the following iterative update equation to update the marginal order distribution [13, 18,
332 21, 22]:

$$\Delta P(\text{Order}) = \alpha(\pi(\text{Order}|\text{Patient}) - P(\text{Order})), \quad (13)$$

333 where $\alpha \in [0, 1]$ is a learning rate parameter. To generate the simulated results in Figure 4B,
334 we defined $Q(\text{Order}, \text{Patient})$ as a 2x2 (Patient x Order) distribution, sampled from a uniform
335 distribution over the interval [0, 1] using $\beta = 100$ for the low cognitive load condition and $\beta = 1$ for
336 the high cognitive load condition. $P(\text{Order})$ was initialized as [0.5, 0.5] and we randomly sampled
337 from patients (either patient 1 or patient 2) for 1,000 trials. We calculated the policy according
338 to Equation 2 and used it to update $P(\text{Order})$ according to Equation 13 using $\alpha = 0.03$. We
339 calculated the probability of repeating an order across all trials to estimate perseveration. We
340 repeated this simulation 100 times.

341 In Figure 4, we define perseveration as a binary variable equal to 1 if any order was repeated
342 and 0 otherwise.

343 To account for chance levels of perseveration, which increases when the order batch size is larger,
344 or when the order placed was higher probability, we used the following process. First, we defined I_O
345 as the set of all orders placed at a particular timepoint. We calculated the probability that no order
346 would be repeated as $P(\text{no repeat}) = (1 - \sum_{I_O} P(I_O))^N$ where $P(I_O)$ is the probability of making
347 a particular order, drawn from $P(\text{Order})$ and N is the number of orders in the current batch. The
348 chance probability of any one order is repeated is therefore $P(\text{repeat order}) = 1 - P(\text{no repeat})$.
349 Intuitively, if the number of prior orders goes up or the probability of those orders is high (either
350 of which increases $\sum_{I_O} P(I_O)$), or the number of orders in the current batch is large (increasing
351 N), then the probability of repeating an order by chance increases. We include this as a regressor
352 in all perseveration regression analyses (see Statistical analyses below).

353 We calculated shift duration by calculating the cumulative time elapsed from the first order to
354 the current order. When the cumulative time elapsed exceeded 16 hours, we defined the end of the
355 shift and considered the current order as the start of a new shift. This is a longer duration than
356 typical shifts, which we included to allow ample time for post-shift orders to be placed, in the case
357 of lengthy passoffs (e.g., multiple codes running at the end of shift requiring a provider's attention,
358 limiting passoff at the assigned time). For all analyses, we only include perseveration within a shift
359 (i.e., we ignore the first order of a shift in our analyses).

360 For control analyses (Figure 1), we used a different definition of perseveration (fractional),
361 instances where perseveration was to different patients, and for instances where the order batch
362 size for the prior and current orders was equal to 1. We used a fractional definition of perseveration
363 to account for instances where multiple orders were batched and released simultaneously (in
364 Figure 1, perseveration was defined as the fraction of orders that were repeated). We used instances
365 where perseveration was to different patients because orders may be repeated for the same patient
366 for reasons unrelated to the theory (e.g., because an inadequate blood sample was drawn, requiring
367 a duplicate order to be placed for another attempt). We used instances with a batch order size of
368 1 for prior and current orders to control for effects related to batch size.

369 Statistical analyses

370 For all regressions, we standardized all variables by z -scoring, with the exception of the binary
371 perseveration variable used as the outcome variable with logistic regressions. For all perseveration
372 analyses, we used random effects models which included the fixed effects listed in the text and a
373 random intercept per provider. All error bars are SEM unless otherwise reported. We used the
374 method of [48] to calculate within-subject SEM for Figure 3. We report a minimum p value of
375 10^{-100} .

376 **Funding sources:** This work was supported by National Institute of Mental Health grants
377 R25MH135837 and T32MH125786 (B.A.B.) and a Schmidt Sciences Polymath Award (S.J.G.).

378 **Author contributions:** B.A.B. contributed to formal analysis, investigation, methodology, visualization,
379 and writing the original draft. S.H. contributed to methodology and project administration.
380 T.H.M. contributed to data curation, methodology, project administration. S.J.G. contributed to
381 funding acquisition, methodology, project administration. All authors contributed to conceptual-
382 ization and reviewing & editing the manuscript.

383 **Competing interests:** S.H.: Employment: Mass General Physician Organization. Mass General
384 Institute of Health Professions. Consulting Fees: Maze Eng Inc, ConductScience Inc, VIO Elevate
385 Beauty Partners. No other disclosures are reported. S.H. is a volunteer at Health Tech Without
386 Borders. T.H.M.: Dr. McCoy is funded to grants to his institution from InterSystems, Philips
387 Research, Koa Health, as well as the National Institute of Mental Health. He is a paid Associate
388 Editor at *npj* Digital Medicine and paid speaker within the MGH Psychiatry Academy.

389 **Data and materials availability:** The Massachusetts General Brigham Institutional Review
390 Board does not allow open dissemination or the deposition of these electronic medical record data
391 in a repository because participants (patients and providers) did not provide formal consent. This is
392 to minimize risk of individual patients and providers being identified. To obtain access to the data,
393 investigators should collaborate with a Massachusetts General Brigham-affiliated faculty member
394 to submit an application to the Institutional Review Board requesting access to these data.

395 **Acknowledgments:** We thank Sara Golas for extracting the data from the electronic medical
396 record. We thank Gideon Loewinsohn for comments on an earlier draft of the manuscript.

397 **References**

398 [1] Donaldson, M. S., Corrigan, J. M. & Kohn, L. T. *To err is human: building a safer health*
399 *system* (National Academies Press, 2000).

400 [2] Shojania, K. G., Duncan, B. W., McDonald, K. M., Wachter, R. M. & Markowitz, A. J. *Making*
401 *health care safer: a critical analysis of patient safety practices.* 43 (Agency for Healthcare
402 Research and Quality, U.S. Department of Health and Human Services, 2001).

403 [3] Landrigan, C. P. *et al.* Effect of reducing interns' work hours on serious medical errors in
404 intensive care units. *New England Journal of Medicine* **351**, 1838–1848 (2004).

405 [4] Barger, L. K. *et al.* Impact of extended-duration shifts on medical errors, adverse events, and
406 attentional failures. *PLoS medicine* **3**, e487 (2006).

407 [5] Lockley, S. W. *et al.* Effects of health care provider work hours and sleep deprivation on safety
408 and performance. *The Joint Commission Journal on Quality and Patient Safety* **33**, 7–18
409 (2007).

410 [6] West, C. P., Tan, A. D., Habermann, T. M., Sloan, J. A. & Shanafelt, T. D. Association of
411 resident fatigue and distress with perceived medical errors. *Jama* **302**, 1294–1300 (2009).

412 [7] Saposnik, G., Redelmeier, D., Ruff, C. C. & Tobler, P. N. Cognitive biases associated with
413 medical decisions: a systematic review. *BMC medical informatics and decision making* **16**,
414 1–14 (2016).

415 [8] Lieder, F. & Griffiths, T. L. Resource-rational analysis: Understanding human cognition as the
416 optimal use of limited computational resources. *Behavioral and brain sciences* **43**, e1 (2020).

417 [9] Sims, C. R. Rate–distortion theory and human perception. *Cognition* **152**, 181–198 (2016).

418 [10] Sims, C. R. Efficient coding explains the universal law of generalization in human perception.
419 *Science* **360**, 652–656 (2018).

420 [11] Gershman, S. J. Origin of perseveration in the trade-off between reward and complexity.
421 *Cognition* **204**, 104394 (2020).

422 [12] Bari, B. A. & Gershman, S. J. Resource-rational psychopathology. *Behavioral Neuroscience*
423 (2024).

424 [13] Lai, L. & Gershman, S. J. Human decision making balances reward maximization and policy
425 compression. *PLOS Computational Biology* **20**, e1012057 (2024).

426 [14] Lai, L. & Gershman, S. J. Policy compression: An information bottleneck in action selection.
427 In *Psychology of Learning and Motivation*, vol. 74, 195–232 (Elsevier, 2021).

428 [15] Nemenman, I., Shafee, F. & Bialek, W. Entropy and inference, revisited. *Advances in neural*
429 *information processing systems* **14** (2001).

430 [16] Paninski, L. Estimation of entropy and mutual information. *Neural computation* **15**, 1191–1253
431 (2003).

432 [17] Jaynes, E. T. Information theory and statistical mechanics. *Physical review* **106**, 620 (1957).

433 [18] Liu, S., Lai, L., Gershman, S. J. & Bari, B. A. Time and memory costs jointly determine a
434 speed-accuracy trade-off and set-size effects. *PsyArXiv* (2024).

435 [19] Clifford, C. T. *et al.* Association between covid-19 diagnosis and presenting chief complaint
436 from new york city triage data. *The American Journal of Emergency Medicine* **46**, 520–524
437 (2021).

438 [20] Rodgers, L. *et al.* Changes in seasonal respiratory illnesses in the united states during the
439 coronavirus disease 2019 (covid-19) pandemic. *Clinical Infectious Diseases* **73**, S110–S117
440 (2021).

441 [21] Gershman, S. J. & Lai, L. The reward-complexity trade-off in schizophrenia. *Computational
442 Psychiatry* **5** (2021).

443 [22] Bari, B. A., Krystal, A. D., Pizzagalli, D. A. & Gershman, S. J. Computationally-informed
444 insights into anhedonia and treatment by κ -opioid receptor antagonism. *medRxiv* 2024–04
445 (2024).

446 [23] Bari, B. A. & Gershman, S. J. Undermatching is a consequence of policy compression. *Journal
447 of Neuroscience* **43**, 447–457 (2023).

448 [24] Jakob, A. M. & Gershman, S. J. Rate-distortion theory of neural coding and its implications
449 for working memory. *Elife* **12**, e79450 (2023).

450 [25] Foster, J. J., Bsales, E. M., Jaffe, R. J. & Awh, E. Alpha-band activity reveals spontaneous
451 representations of spatial position in visual working memory. *Current Biology* **27**, 3216–3223
452 (2017).

453 [26] Barbosa, J. & Compte, A. Build-up of serial dependence in color working memory. *Scientific
454 reports* **10**, 10959 (2020).

455 [27] Bliss, D. P., Sun, J. J. & D’Esposito, M. Serial dependence is absent at the time of perception
456 but increases in visual working memory. *Scientific reports* **7**, 14739 (2017).

457 [28] Manser, T. Teamwork and patient safety in dynamic domains of healthcare: a review of the
458 literature. *Acta Anaesthesiologica Scandinavica* **53**, 143–151 (2009).

459 [29] Schmutz, J. & Manser, T. Do team processes really have an effect on clinical performance? a
460 systematic literature review. *British Journal of Anaesthesia* **110**, 529–544 (2013).

461 [30] Welp, A. & Manser, T. Integrating teamwork, clinician occupational well-being and patient
462 safety—development of a conceptual framework based on a systematic review. *BMC health
463 services research* **16**, 1–44 (2016).

464 [31] Ma, C., Park, S. H. & Shang, J. Inter-and intra-disciplinary collaboration and patient safety
465 outcomes in us acute care hospital units: A cross-sectional study. *International Journal of
466 Nursing Studies* **85**, 1–6 (2018).

467 [32] Cho, H., Sagherian, K., Scott, L. D. & Steege, L. M. Occupational fatigue, workload and
468 nursing teamwork in hospital nurses. *Journal of advanced nursing* **78**, 2313–2326 (2022).

469 [33] Aronson, J. K. Medication errors: what they are, how they happen, and how to avoid them.
470 *QJM: An International Journal of Medicine* **102**, 513–521 (2009).

471 [34] Zavala, A. M., Day, G. E., Plummer, D. & Bamford-Wade, A. Decision-making under pressure:
472 medical errors in uncertain and dynamic environments. *Australian Health Review* **42**, 395–402
473 (2017).

474 [35] Shitu, Z., Hassan, I., Aung, M. M. T., Kamaruzaman, T. H. T. & Musa, R. M. Avoiding
475 medication errors through effective communication in a healthcare environment. *Malaysian
476 Journal of Movement, Health & Exercise* **7**, 115–128 (2018).

477 [36] The Joint Commission. Sentinel event statistics (1995–2019) (2019). URL <https://psnet.ahrq.gov/issue/sentinel-event-statistics-1995-2019>. Accessed: 2024-12-01.

478

479 [37] Bal, B. S. An introduction to medical malpractice in the united states. *Clinical orthopaedics and related research* **467**, 339–347 (2009).

480

481 [38] Yu, C., Liu, J. & Zhao, H. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. *BMC medical informatics and decision making* **19**, 111–120 (2019).

482

483

484 [39] Bovenzi, I. *et al.* Pruning the path to optimal care: Identifying systematically suboptimal medical decision-making with inverse reinforcement learning. *arXiv preprint arXiv:2411.05237* (2024).

485

486

487 [40] Chong, P., Coleska, A., Kijpaisalratana, N., el Ariss, A. & He, S. 68 leveraging probability theory and machine learning to reduce diagnostic uncertainty. *Annals of Emergency Medicine* **84**, S32–S33 (2024).

488

489

490 [41] Kelen, G. D. *et al.* Emergency department crowding: the canary in the health care system. *NEJM Catalyst Innovations in Care Delivery* **2** (2021).

491

492 [42] Timbie, J. W. *et al.* Systematic review of strategies to manage and allocate scarce resources during mass casualty events. *Annals of emergency medicine* **61**, 677–689 (2013).

493

494 [43] Lin, Y.-K., Chen, K.-C., Wang, J.-H. & Lai, P.-F. Simple triage and rapid treatment protocol for emergency department mass casualty incident victim triage. *The American journal of emergency medicine* **53**, 99–103 (2022).

495

496

497 [44] Bhui, R., Lai, L. & Gershman, S. J. Resource-rational decision making. *Current Opinion in Behavioral Sciences* **41**, 15–21 (2021).

498

499 [45] Arimoto, S. An algorithm for computing the capacity of arbitrary discrete memoryless channels. *IEEE Transactions on Information Theory* **18**, 14–20 (1972).

500

501 [46] Blahut, R. Computation of channel capacity and rate-distortion functions. *IEEE transactions on Information Theory* **18**, 460–473 (1972).

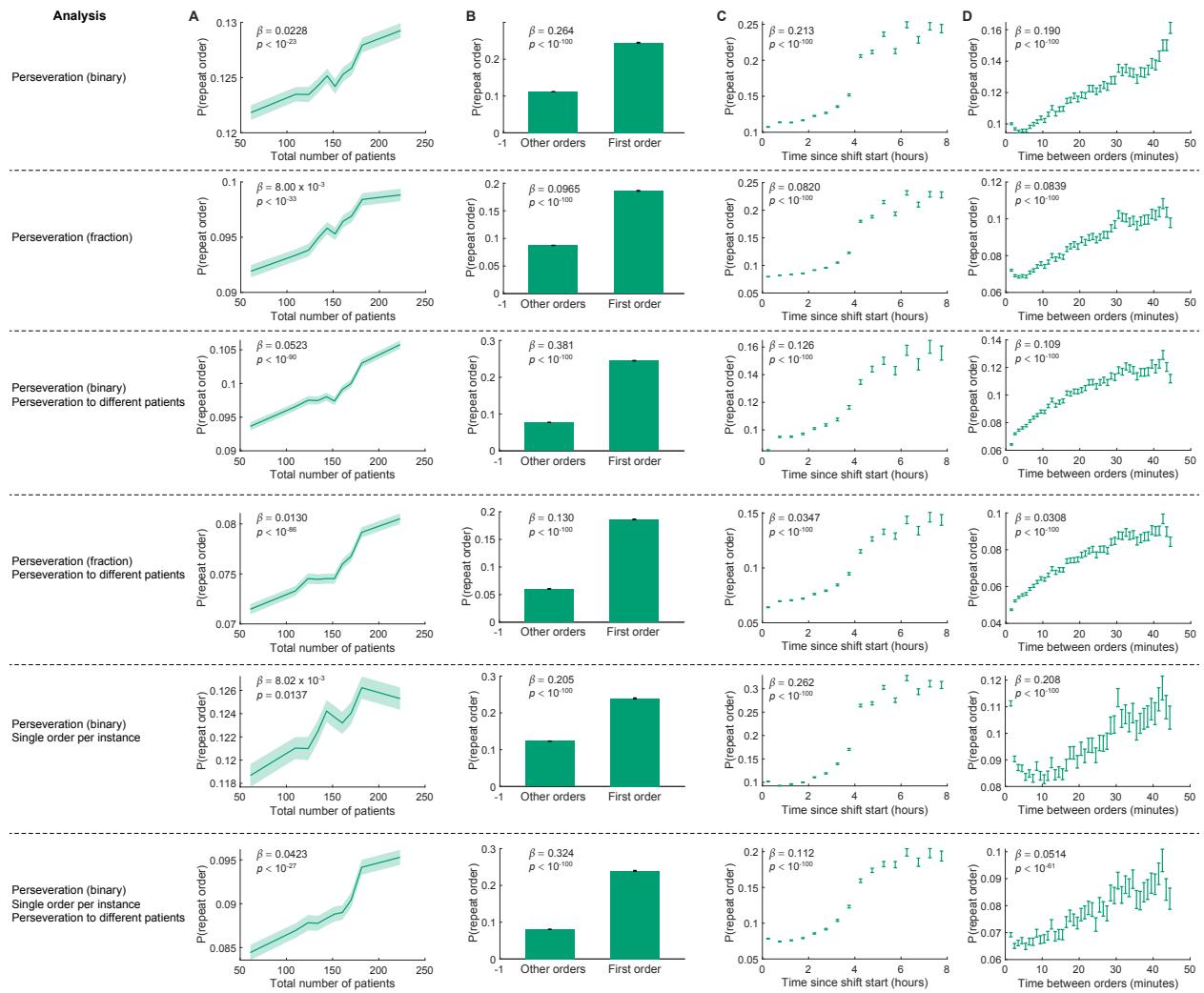
502

503 [47] Hale, T. *et al.* A global panel database of pandemic policies (oxford covid-19 government response tracker). *Nature human behaviour* **5**, 529–538 (2021).

504

505 [48] Cousineau, D. *et al.* Confidence intervals in within-subject designs: A simpler solution to loftus and masson's method. *Tutorials in quantitative methods for psychology* **1**, 42–45 (2005).

506

508 **Extended Data**

Extended Data Figure 1: Control analyses for perseveration results. The left row summarizes the control analyses for that row. See Materials and Methods for full details. Top row is the same analysis as in Figure 4. For each analysis, we fit mixed effects models (logistic for binary, linear for fraction) as a function of the graphed predictor and chance levels of perseveration. The inset lists the regression coefficient and p value for the graphed predictor. **(A)** Control analyses for total number of patients. **(B)** Control analyses for first order. **(C)** Control analyses for time since shift start. **(D)** Control analyses for time between orders.