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Abstract

Medical providers make more errors under cognitive load, often viewed as arising from suboptimal
decision-making. This interpretation relies on frameworks that ignore cognitive costs. Here, we
offer a fundamentally different perspective that reveals an underlying structure to medical errors:
bias (systematic deviations) and noise (variability) are inevitable consequences of optimal decision-
making under cognitive resource constraints. We analyze orders placed by emergency department
providers and find that cognitive load increases bias and noise, consistent with the optimal al-
location of resources. Because providers near-optimally adjust to cognitive demands, this argues
that guidelines that increase cognitive resources are necessary to reduce errors. Consistent with
this perspective, bias and noise are minimized when multiple providers contribute to patient care.
These findings have implications for optimizing medical care.
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Introduction

Medical providers make decisions under significant cognitive load. They contend with high patient
volumes, vast amounts of information, and limited time. It stands to reason that these cognitive
factors should influence decision-making, prompting providers to adopt strategies that balance
the utility of their decisions with cognitive costs. It is well established that cognitive fatigue
leads providers to adopt strategies that lead to medical errors [1, 2, 3, 4, 5, 6]. This has led to
the suggestion that the strategies employed by medical providers are strictly suboptimal [7], a
statement based on normative frameworks that ignore cognitive costs.

Cognitive costs cannot, however, be ignored [8]. Accounting for these costs has been essential in
explaining phenomena across fields ranging from neuroscience to moral judgment. It is therefore un-
clear whether providers employ decision-making strategies that are optimized for efficient memory
use under cognitive constraints. In other words, how should providers adapt to demands on cogni-
tion and do their decision-making patterns follow these principles? Establishing this understanding
is critical, as it provides insight into the source of medical errors and can inform interventions to
support medical decision-making.

To address this question, we formalize the notion of optimal decision-making under cognitive
resource constraints. We turn to rate-distortion theory, which analyzes how constraints on informa-
tion transmission across a noisy channel affect distortions of input signals. Rate-distortion theory
has been used to understand how a variety of human behavioral phenomena arise from information
capacity limits [9, 10, 11, 12, 13]. Here, we use rate-distortion theory to model decision-making as
a capacity-limited channel [14]. To test the theory’s relevance in natural environments, we focus on
real-world orders placed by medical providers in the emergency department, a setting with large
shift-to-shift variation in patient volume that offers a natural setting to observe changes in cognitive
load.

Consistent with the optimal use of limited resources, we find that medical decisions tend towards
increased bias (systematic deviations) and noise (variability) as cognitive load increases. Consistent
with theory, bias is not constant but adapts according to patient characteristics. A unique pre-
diction is that adaptation produces perseveration—a tendency to repeat orders—which represents
an efficient strategy to conserve resources. Across four independent measures of cognitive load,
we confirm a relationship between cognitive load and perseveration. Finally, we show that bias
and noise are minimized when multiple providers contribute to patient orders. This suggests that
collaborative decision-making may mitigate the effects of cognitive load.

Results

Decision-making as a capacity-limited channel

We model each provider as a distribution over orders conditional on the patient (Figure 1A), which
we term the policy, m(Order|Patient). Throughout this manuscript, ‘policy’ is a technical term in
reinforcement learning, referring to a provider’s internal strategy for selecting actions, rather than
an externally imposed set of guidelines, as the term is typically used. The policy is constrained
by an upper bound on the mutual information between patients and orders, the policy complezity
I™(Patient; Order), which defines the amount of memory needed to encode the policy; the more
orders depend on patient-specific characteristics, the greater the policy complexity, and the more
memory required to store that policy. The optimal policy maximizes expected utility U™ subject
to the capacity constraint I™(Patient; Order) < C, which can be reformulated as:

" = argmax fU™ — I"(Patient; Order), (1)
™
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Figure 1: Decision-making modeled as a capacity-limited channel. (A) Patient repre-
sentations are transmitted through a capacity-limited information channel to produce policy w, a
conditional distribution of orders for a given patient. Given assumed utilities of patient-specific or-
ders (blue inset), rate-distortion theory provides the optimal policy which can be used to trace out a
utility /complexity frontier (black line). Each point on the frontier corresponds to a different choice
of trade-off parameter 5. (B) The optimal policy is a softmax function, seen ubiquitously in the rein-
forcement learning literature. It consists of two factors: patient-specific orders, Q(Patient, Order),
and default orders, P(Order). (C) The parameter 5 controls the utility/information trade-off.
When g is large (top panel), the policy results in more patient-specific orders but requires more
memory (here, 1 bit). When § is small (bottom panel), the policy results in more default orders
but require less memory (here, ~ 0.16 bits). This results in noisier policies that are biased towards
default orders.

where 5 > 0 is a trade-off parameter implicitly reflecting the capacity constraint C. The advantage
of this formulation is that the optimal capacity-limited policy can be expressed explicitly:

m(Order|Patient) x exp[f Q(Patient, Order) + log P(Order)]. (2)

The optimal policy is a function of two terms (Figure 1B): the utility of patient-specific orders,
Q(Patient, Order), and the default (marginal) probability of orders,

P(Order) = Z P(Patient)m(Order|Patient). (3)

Patient

The expected utility is given by U™ = E[Q(Patient, Order)|r].

The trade-off between utility (which we seek to maximize) and policy complexity (the memory
cost that we seek to minimize) is dictated by 8. When § is large, the policy is strongly dictated
by patient-specific orders, resulting in a policy with high utility and high policy complexity, ne-
cessitating more memory (Figure 1C). This is the solution when memory constraints are ignored.
At the other extreme, when  is small, the policy is strongly dictated by the default order distri-
bution, resulting in a policy with comparatively lower utility but with the benefit of demanding
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less memory—what we term policy compression [14]. Intermediate 5 values interpolate between
these two regimes, mixing patient-specific orders and default orders to generate the policy. This
generates the utility /complexity frontier in Figure 1A, in which utility monotonically increases with
policy complexity.

We sought to understand how cognitive load affects the optimal policy. In Figure 2A, we
present a toy example where we define cognitive load as the number of concurrent patients that a
provider must manage. Consistent with intuition, when a resource-limited provider manages more
patients, the utility of care diminishes slightly, because the same memory must now be spread
across more patients. Figure 2B highlights how this arises: regardless of the provider’s policy
complexity, the optimal 8 parameter is always smaller under higher cognitive load. This has two
critical consequences (Figure 2C). First, decreased 3 produces a smaller reliance on patient-specific
orders, which makes the policy more random. We can see this in Figure 1C, where the policy under
smaller 3 has higher entropy (i.e., increased randomness). Second, decreased [ produces a greater
reliance on default orders, which introduces bias. This can again be observed in Figure 1C, where
the policy is biased towards the default order distribution.

Policy compression in the emergency department

To identify signatures of noise and bias in medical decisions, we analyzed orders placed by medical
providers over a 5-year period in an emergency department serving a major metropolitan area. This
dataset consisted of 5,934 providers placing approximately 9 million orders across 448,129 patient
encounters. Owing to well-known problems with estimating information-theoretic quantities from
sparse distributions [15, 16], we collapsed the 3,258 unique orders into two categories: laboratory-
based orders and other orders. This yielded a near maximal entropy distribution (P(Labs) = 0.554,
P(Other) = 0.446), ideal for calculating information-theoretic quantities [17]. For each patient, we
calculated the policy based on the first 10 orders placed for that patient (Figure 2D). We did this
to ensure information-theoretic quantities were being estimated on similar distributions for each
patient. We calculated the policy exclusively for instances where only one provider placed all 10
orders because we are interested in the cognitive properties of individual providers.

Because the electronic medical record we queried does not record the number of concurrent pa-
tients under a provider’s care, we operationalized cognitive load as the total number of patients in
the emergency department. Intuitively, if there are more overall patients in the emergency depart-
ment, then there will be an increase in the average number of patients per provider. We found that
policy complexity decreases with cognitive load (BTotal number of patients = —0.581, t168 = —9.26, p <
10716; Figure 2E) consistent with the idea that cognitive resources are stripped as the emergency
department becomes crowded. According to the theory, both increased cognitive load in a busy
emergency department and reduced policy complexity lead to a decreased 8 parameter, which in-
creases both noise and bias. To test whether decisions become noisier, we estimated the conditional
entropy of the policy, which quantifies the randomness of the policy. Consistent with theory (Figure
2F), conditional entropy increases with cognitive load (STotal number of patients = 0.637, t168 = 10.7,
p < 10'%; Figure 2G). To test for increased bias, we calculated the Kullback—Leibler (KL) diver-
gence between the policy, w(Order|Patient), and the default order distribution, P(Order). The
KL divergence measures the statistical distance between two distributions: the more the policy
resembles the default order distribution, the smaller the KL divergence. Consistent with theory
(Figure 2H), the KL divergence decreases with cognitive load (BTotal number of patients = —0.583,
ties = —9.30, p < 10716; Figure 2I).

The default order distribution adapts to patient characteristics

One key feature of the theory is that the bias, which arises from the default order distribution,
should capture statistical regularities in patient characteristics to allow for the efficient use of
memory. This requires the default order distribution to adapt; it should change when patient
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Figure 2: Cognitive load produces bias and noise in decisions. (A) The optimal util-
ity /complexity frontier is lower under higher cognitive load because the same resources are spread
over more patients. For simulation, the utility of patient-specific orders was drawn from a uniform
distribution and averaged over 1,000 replicates. Cognitive load was operationalized as management
of 2 (low load) or 4 (high load) simultaneous patients. (B) For the same policy complexity, the
optimal 8 parameter is strictly smaller under higher cognitive load. (C) Higher cognitive load and
decreased policy complexity both lead to smaller § resulting in increased noise and bias. (D) We
categorized orders into lab-based orders and other orders and calculated the policy as the first 10
orders placed for patients. We use these empirical distributions to estimate information-theoretic
quantities. (E) Policy complexity decreases with total number of patients in the emergency depart-
ment, our proxy for cognitive load. (F) The theory predicts an increase in conditional entropy as a
function of cognitive load, defined as in panel A. (G) Empirical conditional entropy increases with
total number of patients. (H) The theory predicts a decrease in K L(mw(Order|Patient)||P(Order))
with cognitive load due to increased bias towards the default order distribution. (I) Empirical
K L(w(Order|Patient)||P(Order)) decreases with total number of patients. Error bars are SEM.
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characteristics change. We have previously observed signatures of this adaptation process in well-
controlled behavioral experiments [13, 18].
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Figure 3: Default orders adapted to changing patient characteristics during the
COVID pandemic. We split orders into low and high COVID severity dates, defined by the
number of daily COVID cases, and calculated the default order distribution in each condition. For
low and high COVID severity, we calculated the Kullback-Leibler (KL) divergence between the
policy and each of these default order distributions. (A) For low COVID severity dates, the KL di-
vergence between the policy and the default order distribution, K L(7(Order|Patient)||P(Order),
separately for low severity and high severity default orders. (B) The same analysis but for the
policy during high COVID severity dates. All error bars are within-subject SEM.

To test whether providers adapt their default order distributions, we leveraged the COVID
pandemic, since this resulted in large-scale changes in patient characteristics [19, 20]. Intuitively,
if more patients present to the emergency department with respiratory concerns, then providers
should be more likely to order respiratory-related orders across the board. We reasoned that default
orders would adapt to COVID severity, capturing changes in ordering patterns among providers.
We calculated terciles of daily COVID cases and split orders into low COVID severity (first tercile)
and high COVID severity (third tercile) dates between January 1, 2020 and December 31, 2022,
and calculated the default order distribution under each condition. We predicted that the policies
implemented by providers on low COVID severity dates would resemble the default orders placed on
low COVID severity dates. Further, the default orders learned on low COVID dates should provide a
relatively poor description of orders placed on high COVID severity dates. For low COVID severity
dates, we calculated the KL divergence twice: once between the policy and low COVID default
orders, and again between the policy and high COVID default orders. We found a smaller KL
divergence with low COVID default orders (KL divergence with low COVID default orders (mean
+ within-subject SEM): 0.0891 £ 3.25 x 107°; KL divergence with high COVID default orders:
0.0897 £ 3.25 x 1075; paired t-test: 142,209 = 8.92, p < 10718; Figure 3A). We repeated this process
for high COVID severity dates and found the inverse—the high COVID policy now resembled the
high COVID default orders (KL divergence with low COVID default orders (mean + within-subject
SEM): 0.0891 =+ 3.27 x 10~9; KL divergence with high COVID default orders: 0.0886 + 3.27 x 107?;
paired t-test: 41,119 = —7.51, p < 10~13; Figure 3B). These findings were exceedingly unlikely to
be due to chance (difference in KL divergence for low COVID severity dates: 5.81 x 104, shuffled
data 95% CI [~1.26 x 107%, 3.17 x 107°]; difference in KL divergence for high COVID severity
dates: —4.91 x 1074, shuffled data 95% CI [~3.10 x 107>, 1.00 x 107%]). These results strongly
suggest that the default order distribution adapts to changing patient characteristics.

How do providers adapt the default order distribution? We have previously proposed that the



141

142

143

144

145

146

147

148

149

150

151

152

153

154

156

157

158

159

brain learns the default order distribution by incremental updating [13, 18, 21, 22]:

AP(Order) < w(Order|Patient) — P(Order). (4)

This update ensures that if an order was recently placed, it is more likely to be chosen again, which
results in perseveration. Note that perseveration is a consequence of optimal resource-constrained
decision-making. Our use of the term is technical and does not imply its colloquial, often pejorative,
connotation. We have observed signatures of such perseveration in well-controlled tasks [18, 22, 23].
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Figure 4: Adaptation of the default order distribution produces perseveration. (A)
An iterative algorithm for updating the default order distribution produces perseveration (the
tendency to repeat orders), which is magnified under increased cognitive load. (B) The theory
predicts increased perseveration under increased cognitive load. (C-F) Perseveration increases
with the total number of patients in the emergency department (C), for the first order placed for
a patient (D), with time in shift (E), and with time between orders (F). Error bars are SEM.

We predicted increased perseveration under cognitive load, because default orders influence the
policy more strongly in this regime due to reduced § (Figures 4A,B). Because we are no longer
calculating information-theoretic quantities, we revert back to the raw order distribution used by
providers (3,258 unique orders). We do this to ensure minimal preprocessing of the data and
to assess whether providers repeat the raw orders placed (rather than order categories), which
is a stronger test of the theory. Consistent with theory, providers perseverate more when there
are more patients in the emergency department (STotal number of patients = 0-0228, 2 467468 = 10.1,
p < 10723; Figure 4C), taxing memory. This effect held across a number of control analyses,
including using different definitions of perseveration, only looking at perseveration to different
patients, and controlling for the number of orders placed (figure 1A). This is consistent with findings
from the working memory literature where subjects perseverate more when more items need to be
remembered [24].

We next identified a more direct effect of a patient being incorporated into a provider’s mem-
ory: when the first order for that patient is placed. Prior to the first order, providers are likely
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interviewing, assessing, and developing an initial plan for that patient—all events that tax memory.
The first order should therefore mark when a provider has moved into a state of higher cognitive
load (Figure 2A). This is indeed what we observe: perseveration increases when the order placed
is the first order for a patient (Spirst order = 0.264, t2411,308 = 143, p < 107190, Figure 4D, 1B).

We next identified a signature of learning the default order distribution. Because the bias
reflects continuous incremental adjustments, the tendency to perseverate should increase over time
[24, 25, 26]. Consistent with this hypothesis, perseveration increases with the time that has elapsed
since a provider started their shift (STime since shift start = 0.213, t2 467468 = 114, p < 107199; Figure
4E, 1C).

Finally, we investigated the effect of memory retention interval, operationalized as the time
between orders. We reasoned that the longer it has been since a provider placed an order, the
longer they are likely to have to hold onto information related to the upcoming order. In studies
of working memory, longer retention intervals tend to increase perseveration [24, 27]. Indeed, we
found that perseveration increases as the time between orders increases (Srime between orders = 0.190,
t2.467.468 = 114, p < 107100, Figure 4F, 1D).

To ensure the independence of these effects, we fit a logistic mixed effects regression to pre-
dict perseveration as a function of the previous 4 factors as well as chance levels of perseveration.
We found that all regression coefficients were positive and significant, confirming that each fac-
tor contributes to perseveration (SBrotal number of patients = 0.0207, t2411395 = 9.01, p < 10718,
Brirst order = 0.256, t2411,305 = 138, p < 1071 Brine gince shift start = 0.138, t2411,305 = 42.0,
p< 10_100; BTime between orders = 0.0789, 12,411,395 = 26.3, p < 10_100)-

Taken together, we find that medical providers systematically perseverate when placing medical
orders. Far from a hindrance, this perseveration serves to economize limited cognitive resources.

Counteracting the effects of cognitive load

Although our results argue that providers optimally adapt to cognitive load, the resulting bias and
noise in medical decisions is unwanted from a systems perspective. How then can bias and noise be
reduced, to limit downstream medical errors? It is recognized that effective teamwork can offset the
deleterious effects of cognitive fatigue [28, 29, 30, 31, 32], though this introduces miscommunication,
which lead to medical errors [33, 34, 35, 36]. We therefore sought to quantify the effect of multiple
providers collaborating on care, to see if and how teamwork improves patient care. Concretely, we
partitioned the data into instances where one provider placed the first 10 orders for a patient, and
instances where two or more providers placed these orders (our operationalization of teamwork).
We found that when multiple providers contribute to patient care, decisions are improved across
the board. Policy complexity increases across all levels of cognitive load (policy complexity under 1
provider (mean £+ SEM): 0.0906 + 7.74 x 10~%; policy complexity under 2 or more providers: 0.116
+ 1.66 x 1073; two-sample t-test: t333 = —13.9, p < 10734; Figure 5A). Commensurate with the
increase in policy complexity, noise and bias both decrease (conditional entropy under 1 provider
(mean £+ SEM): 0.893 + 7.45 x 10™*; conditional entropy under 2 or more providers: 0.883 =+
1.80 x 1073; two-sample t-test: t33g = 5.46, p < 10~7; KL divergence under 1 provider: 0.0908 +
7.77 x 1074 KL divergence under 2 or more providers: 0.116 + 1.65 x 1073; two-sample t-test:
t33s = —13.8, p < 10734 Figure 5B,C). Teamwork therefore effectively increases the cognitive
resources available, in service of optimal decision-making.

Discussion

Taken together, our work makes the important point that bias and noise in decisions are inevitable
properties of an optimal, resource-limited system. Importantly, the theory accounts for a subset
of apparent errors committed by providers. Some errors are clearly attributable to other sources.
For example, a provider’s distribution of patient-specific orders may be misspecified, resulting in
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Figure 5: Effects of teamwork on bias and noise. (A) We calculated the policy separately
when 1 provider made all orders and when 2 or more providers made all orders. When multiple
providers contribute to orders, the policy complexity increases. (B) The conditional entropy, an
estimate of the stochasticity of the policy, creases when multiple providers contribute to orders.
(C) Bias, estimated as K L(w(Order|Patient)||P(Order)), decreases (larger KL divergence) when
multiple providers contribute to orders. Error bars are SEM.

the inappropriate order being placed even under cognitively ideal conditions. Medical malpractice
law recognizes these types of errors as a “failure to adhere to the standards of the profession” [37].
Quantifying the extent to which providers optimize their actions necessitates estimating the under-
lying reward structure that governs clinician behavior—a line of research currently under develop-
ment [38, 39, 40]. Our work, however, makes an important distinction: there is a ceiling to the
performance a provider can attain under a capacity limit.

We therefore suggest that guidelines focused on interventions to increase cognitive resources or
minimize cognitive load are likely to have outsized impact, particularly in environments like emer-
gency departments where cognitive demands are high. For example, interventions aimed at limiting
crowding in the emergency department [41] may free up cognitive resources for providers, improv-
ing decision quality. Emergency medicine often requires rapid decision-making (e.g., head imaging
without a thorough history for suspected stroke), contrasted with the more thorough history and
physical examination typical in outpatient settings. These differences reflect necessary adaptations
to situational demands rather than deficiencies in care, highlighting the value of considering cogni-
tive resources explicitly. Another suggestion is that medical protocols can reify cognitive resources
as if they were physical resources. Mass casualty protocols, for example, are typically framed in
terms of physical resource management but implicitly also manage cognitive resources by providing
simple and rapid triage guidelines to streamline decision-making [42, 43]. Explicitly accounting for
cognition as a resource may allow systems to interpolate between regimes where cognitive resources
are rich and where they are depleted, helping improve patient outcomes across varying clinical

10
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environments.
By integrating cognitive costs into formal models of medical decision-making, our work opens
avenues for designing interventions that enhance decision-making and improve patient outcomes.

Methods

Rate-distortion theory: a capacity limit applied to decision-making

All information processing systems are subject to physical constraints that limit the ability to
perfectly store and transmit information. These limits place an upper bound on achievable perfor-
mance [8]. Here, we use rate-distortion theory to formalize decision-making as a constrained opti-
mization problem that trades off the utility of decisions with the associated cognitive costs [14, 44].

We consider a decision-maker as a provider implementing a policy, 7(Order|Patient), a prob-
ability distribution that maps patients onto orders (in reinforcement learning, the standard ter-
minology is an agent using a policy that maps states onto actions). From the perspective of
rate-distortion theory, providers generate policies by transmitting patient information across a
capacity-limited channel to generate orders. We define the cognitive cost of decision-making as
the information rate across this channel: the policy complezity, or the mutual information between
patients and orders:

Order|Patient) 5)
P(Order)

I™(Patient; Order) = Z P(Patient) Z 7w (Order|Patient) log ult

Patient Order

where P(Order) = puient P(Patient)m(Order|Patient) is the marginal order distribution, which
we refer to as default orders throughout.

We assume that this channel is subject to a capacity constraint, C', or an upper bound on the
policy complexity. According to Shannon’s noisy channel theorem, the minimum expected number
of bits to errorlessly transmit a signal across a channel is equal to the mutual information. If the
optimal policy requires more memory than the provider possesses, then the provider must discard
some patient-specific information to reduce the policy complexity under the capacity limit. The
optimal policy, 7* is defined as:

" = argmax U™, subject to I" (Patient; Order) < C (6)

where U™ is the expected utility of the policy

Ur = Z P(Patient) Z m(Order|Patient)Q(Patient, Order) (7
Patient Order

and Q(Patient, Order) is the expected utility of orders for a given patient, which we refer to as
patient-specific orders throughout.

This constrained optimization problem can be be written as an unconstrained optimization
problem using the following Lagrangian equation:

7* = argmax U™ — I"(Patient; Order) — Z A(Patient) ( Z 7(Order|Patient) — 1) (8)
g Patient Order

where § > 0, A\(Patient) > 0 are Lagrange multipliers. The solution to this equation is:
w(Order|Patient) o exp[f Q(Patient, Order) + log P(Order)] 9)

The optimal policy takes the form of a softmax function, ubiquitous in the reinforcement learning
literature for modeling both artificial and biological agents. /3 plays the role of a utility /information
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trade-off parameter: [ units of utility can be “bought” for 1 unit of information. The exact
relationship between 8 and policy complexity is given as:

B aur

~ dI™(Patient; Order)

s (10)
which provides a geometric interpretation of 3, which is the (inverse) slope of the utility /complexity
curve—when the slope is shallow, § is high and when the slope is steep, § is small. In Figure 1A,
at high policy complexity, where 7= 0 Pa;fg:t; Order) is shallow, the optimal f is large and the policy
is largely a function of patient-specific orders, Q(Patient, Order). At low policy complexity, the

slope is steep and the optimal § is small, meaning default orders, P(Order), dominate the policy.

Theoretical simulations

To generate the optimal policy in Figure 1, we define Q(Order, Patient) = [é (1)], where rows

index patients and columns index orders, and compute the optimal policy using the Blahut-Arimoto
algorithm [45, 46]. Note that this is a toy model to help build intuitions, not a literal model of a
realistic provider policy.

To generate the optimal policy in Figure 2A,B, we define Q(Order, Patient) as a 2x2 (Patient
X Order) distribution for the low cognitive load condition and as a 4x2 distribution for the high
cognitive load condition. We simulate 2 orders to mimic the 2 order categories used for empirical
data analysis (lab-based orders vs other orders). For each simulation, we sample from a uniform
distribution over the interval [0,1] for each entry of the ¢ matrix. This captures the intuition
that the optimal set of orders varies across patients, such that lab-based orders are optimal for
some patients, other orders are optimal for others, both may be optimal for others, and so on. We
enforce the constraint that each order should be optimal for at least 1 patient. This prevents the
optimal policy complexity from being 0 bits, which is highly implausible in practice and therefore a
poor description of reality. We use the Blahut-Arimoto algorithm to generate the optimal policies
and repeat this process 1,000 times. We average the relevant quantities (utility /complexity curves,
[ /complexity curves) across simulations to generate the curves in Figure 2A,B.

We estimate the conditional entropy as:

H(Order|Patient) = Z P(Patient) Z 7 (Order|Patient) log w(Order|Patient) (11)
Patient Order

and we calculate the KL divergence as:

m(Order|Patient)
P(Order)

K L(w(Order|Patient)||P(Order)) = Z w(Order|Patient) log
Order

(12)

In Figure 2F,G, we report the average conditional entropy and KL divergence across all policies for
each cognitive load condition (i.e., by marginalizing over policy complexity).

Emergency department ordering data

We obtained approval from the Massachusetts General Brigham Institutional Review Board prior
to conducting this research. We analyzed all non-medication orders placed for patients in the
Massachusetts General Hospital Emergency Department from July 1, 2019 to June 30, 2024. We
restricted the dataset to non-medication orders to limit the combinatorial complexity inherent with
medication-based orders (e.g., different doses, formulations, route of administration, frequency,
standing vs as-needed). We analyzed the following variable associated with each order: patient en-
counter ID (unique ID for that specific encounter), provider ID, time of order placement, order type,
total number of patients in emergency department. The full dataset consisted of 448,129 unique
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patient encounters, 5,934 unique ordering providers, and 8,942,841 orders (3,258 unique orders).
We preprocessed the data by grouping all simultaneously-released orders into ‘order batches’ which
resulted in 2,916,690 order batches. The mean (& SEM) order batch size was 2.67 (£ 2.18 x 1073)
orders, with a median and mode of size 1 (68.6% of all order batches consisted of just 1 order).

Estimating information-theoretic quantities on medical orders

To estimate policy complexity, conditional entropy, and KL divergence in Figure 3E,G,I and Figure
5, we defined the policy, m(Order|Patient), as the first 10 orders placed for a patient, where
patient was defined by patient encounter ID. We collapsed the 3,258 unique orders into the two
categories of lab-based orders and other orders to avoid problems with estimating entropy from
sparse distributions [15, 16]. We estimated the total number of patients as the average number of
patients in the emergency department over the first 10 orders and rounded down to the nearest
integer. We ignored patient encounters with fewer than 10 total orders. We ignored all orders past
the first 10. Because orders were occasionally batched (i.e., multiple orders released simultaneously),
if a given batch resulted in more than 10 orders being placed for a patient, we randomly discarded
orders until only 10 orders remained for a patient.

We computed information-theoretic quantities (Equations 5, 11, and 12) as a function of the
total number of patients. Specifically, we estimated each quantity for individual values of the total
number of patients and estimated the default order distribution as P(Order) = > p,sient P (Patient)
m(Order|Patient) (e.g., for 50 patients, then 51 patients, and so on). Since we used the patient en-
counter ID to define patients, P(Patient) was equiprobable for each analysis. For Figure 2, we did
this for instances where only 1 provider ordered the first 10 orders, which resulted in 196,153 unique
patients encounters. For Figure 5, we included instances where 2 or more providers contributed to
the first 10 orders, which resulted in 89,195 unique patient encounters.

COVID severity analyses

To assess how the COVID pandemic affected the default order distribution, we analyzed COVID
cases in Massachusetts from January 1, 2020 to December 31, 2022, drawn from the Oxford COVID-
19 Government Response Tracker which compiled cases from open dataset (e.g., Johns Hopkins
University Coronavirus Resource Center) [47]. Owing to periodic data collection (e.g., once weekly
reporting of COVID cases at some timepoints), we smoothed the data with a Savitzky-Golay filter
of span 50 and degree 2. We calculated terciles of COVID cases and defined the first tercile
as low severity dates and the third tercile as high severity dates. We calculated the default order
distributions separately for each set of dates. For the shuffled control, we randomly shufled COVID
low and COVID high dates and calculated the difference in KL divergence as the KL divergence
with high severity default orders minus KL divergence with low severity default orders.

Perseveration analyses

We use the following iterative update equation to update the marginal order distribution [13, 18,
21, 22]:
AP(Order) = a(m(Order|Patient) — P(Order)), (13)

where o € [0,1] is a learning rate parameter. To generate the simulated results in Figure 4B,
we defined Q(Order,Patient) as a 2x2 (Patient x Order) distribution, sampled from a uniform
distribution over the interval [0, 1] using 5 = 100 for the low cognitive load condition and g = 1 for
the high cognitive load condition. P(Order) was initialized as [0.5,0.5] and we randomly sampled
from patients (either patient 1 or patient 2) for 1,000 trials. We calculated the policy according
to Equation 2 and used it to update P(Order) according to Equation 13 using o = 0.03. We
calculated the probability of repeating an order across all trials to estimate perseveration. We
repeated this simulation 100 times.
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In Figure 4, we define perseveration as a binary variable equal to 1 if any order was repeated
and 0 otherwise.

To account for chance levels of perseveration, which increases when the order batch size is larger,
or when the order placed was higher probability, we used the following process. First, we defined Ip
as the set of all orders placed at a particular timepoint. We calculated the probability that no order
would be repeated as P(no repeat) = (1 -3, P(Ip))N where P(Ip) is the probability of making
a particular order, drawn from P(Order) and N is the number of orders in the current batch. The
chance probability of any one order is repeated is therefore P(repeat order) = 1 — P(no repeat).
Intuitively, if the number of prior orders goes up or the probability of those orders is high (either
of which increases }; P(lp)), or the number of orders in the current batch is large (increasing
N), then the probability of repeating an order by chance increases. We include this as a regressor
in all perseveration regression analyses (see Statistical analyses below).

We calculated shift duration by calculating the cumulative time elapsed from the first order to
the current order. When the cumulative time elapsed exceeded 16 hours, we defined the end of the
shift and considered the current order as the start of a new shift. This is a longer duration than
typical shifts, which we included to allow ample time for post-shift orders to be placed, in the case
of lengthy passoffs (e.g., multiple codes running at the end of shift requiring a provider’s attention,
limiting passoff at the assigned time). For all analyses, we only include perseveration within a shift
(i.e., we ignore the first order of a shift in our analyses).

For control analyses (Figure 1), we used a different definition of perseveration (fractional),
instances where perseveration was to different patients, and for instances where the order batch
size for the prior and current orders was equal to 1. We used a fractional definition of perseveration
to account for instances where where multiple orders were batched and released simultaneously (in
Figure 1, perseveration was defined as the fraction of orders that were repeated). We used instances
where perseveration was to different patients because orders may be repeated for the same patient
for reasons unrelated to the theory (e.g., because an inadequate blood sample was drawn, requiring
a duplicate order to be placed for another attempt). We used instances with a batch order size of
1 for prior and current orders to control for effects related to batch size.

Statistical analyses

For all regressions, we standardized all variables by z-scoring, with the exception of the binary
perseveration variable used as the outcome variable with logistic regressions. For all perseveration
analyses, we used random effects models which included the fixed effects listed in the text and a
random intercept per provider. All error bars are SEM unless otherwise reported. We used the
method of [48] to calculate within-subject SEM for Figure 3. We report a minimum p value of
10—100.
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Extended Data Figure 1: Control analyses for perseveration results. The left row sum-
marizes the control analyses for that row. See Materials and Methods for full details. Top row is
the same analysis as in Figure 4. For each analysis, we fit mixed effects models (logistic for binary,
linear for fraction) as a function of the graphed predictor and chance levels of perseveration. The
inset lists the regression coefficient and p value for the graphed predictor. (A) Control analyses for
total number of patients. (B) Control analyses for first order. (C) Control analyses for time since
shift start. (D) Control analyses for time between orders.
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