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Abstract
Despite being unpredictable and uncertain, reward environments often exhibit certain regularities, and animals navigating these 
environments try to detect and utilize such regularities to adapt their behavior. However, successful learning requires that animals 
also adjust to uncertainty associated with those regularities. Here, we analyzed choice data from two comparable dynamic forag-
ing tasks in mice and monkeys to investigate mechanisms underlying adjustments to different types of uncertainty. In these tasks, 
animals selected between two choice options that delivered reward probabilistically, while baseline reward probabilities changed 
after a variable number (block) of trials without any cues to the animals. To measure adjustments in behavior, we applied multiple 
metrics based on information theory that quantify consistency in behavior, and fit choice data using reinforcement learning models. 
We found that in both species, learning and choice were affected by uncertainty about reward outcomes (in terms of determining 
the better option) and by expectation about when the environment may change. However, these effects were mediated through 
different mechanisms. First, more uncertainty about the better option resulted in slower learning and forgetting in mice, whereas 
it had no significant effect in monkeys. Second, expectation of block switches accompanied slower learning, faster forgetting, 
and increased stochasticity in choice in mice, whereas it only reduced learning rates in monkeys. Overall, while demonstrating 
the usefulness of metrics based on information theory in examining adaptive behavior, our study provides evidence for multiple 
types of adjustments in learning and choice behavior according to uncertainty in the reward environment.

Keywords Value-based decision making · Risk · Uncertainty · Flexibility · Information theory

Introduction

Learning and choice in dynamic environments are shaped 
by a trade-off between adaptability and precision (Farashahi 
et al., 2017; Khorsand & Soltani, 2017; Soltani et al., 2021). 
In stable environments, learning can be slow to allow more 

precise estimates of reward contingencies. In contrast, in 
unstable and thus less predictable environments, learning 
can become faster, slower, or show no change depending on 
where the decision maker falls in terms of adaptability and 
precision trade-off. This is because faster learning enables 
faster updates but also comes at the cost of less precision, 
which may not be desirable in certain situations. Consistent 

 * Alireza Soltani 
 alireza.soltani@dartmouth.edu

1 Department of Psychological and Brain Sciences, Dartmouth 
College, Hanover, NH, USA

2 Department of Psychology, University of California, Los 
Angeles, Los Angeles, CA, USA

3 Department of Psychiatry, Massachusetts General Hospital, 
Boston, MA, USA

4 Department of Physiology, Development & Neuroscience, 
University of Cambridge, Cambridge, UK

5 Laboratory of Systems Neuroscience, Tohoku University 
Graduate School of Life Sciences, Sendai, Japan

6 Department of Experimental Psychology, University 
of Oxford, Oxford, UK

7 The Solomon H. Snyder Department of Neuroscience, 
Brain Science Institute, Kavli Neuroscience Discovery 
Institute, The Johns Hopkins University School of Medicine, 
Baltimore, MD, USA

8 Allen Institute for Neural Dynamics, Seattle, WA, USA
9 The Brain Research Institute, University of California, Los 

Angeles, Los Angeles, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-022-01059-z&domain=pdf


 Cognitive, Affective, & Behavioral Neuroscience

1 3

with this, Behrens et al. (2007) have shown that more uncer-
tainty in terms of volatility can result in higher learning rates, 
whereas others have found no evidence for such adjustments 
(Donahue & Lee, 2015; Farashahi et al., 2019). Instead, it 
was shown that volatility can decrease the weight of more 
uncertain information (estimated reward probability) relative 
to that of more certain information (reward magnitude) and 
improve encoding of task-relevant signals (Donahue & Lee, 
2015; Farashahi et al., 2019; Massi et al., 2018).

Estimation and adjustments to uncertainty are tightly linked 
to detecting and learning regularities in the reward environ-
ment. Such regularities can modulate learning and decision 
making to enable the decision maker to anticipate and prepare 
for upcoming changes (Atilgan et al., 2022). Nevertheless, 
any regularity is accompanied by an inevitable uncertainty 
due to the stochastic nature of the reward environment. It is 
thus not surprising that the influences of different types of 
uncertainty on learning and the neural mechanisms by which 
these effects are mediated have been topics of much interest 
(Behrens et al., 2007; Faraji et al., 2018; Piray & Daw, 2021; 
Soltani & Izquierdo, 2019; Winstanley & Floresco, 2016; Yu 
& Dayan, 2005). For example, it has been shown that dur-
ing a dynamic foraging task in mice, serotonin neurons in 
mice represent expected uncertainty and track unexpected 
uncertainty for updates (Grossman et al., 2022). In monkeys, 
neurons in the dorsolateral prefrontal cortex track the statisti-
cal variance of reward outcomes (risk) resulting from choices 
for specific options (Grabenhorst et al., 2019). Nonetheless, 
similarities and differences between adjustments to different 
types of uncertainty are not fully understood.

Understanding adjustments to uncertainty requires study-
ing behavior in dynamic learning tasks that involve different 
types of uncertainty—for example, the kind resulting from 
changing reward probabilities for different choice alternatives 
between blocks of trials. To reveal mechanisms underlying 
such adjustments, often choice data are fit using different rein-
forcement learning (RL) models that have been augmented 
with additional components to achieve better goodness of fit 
(Collins & Shenhav, 2022; Farashahi et al., 2017b; Gross-
man et al., 2022; Wittmann et al., 2020; Womelsdorf et al., 
2021). Although RL models can reveal possible mechanisms 
underlying flexible behavior, fit of choice data requires many 
trials, which makes applying this method to study continuous 
adjustments in behavior very challenging.

To address this issue, we recently developed a set of new 
behavioral metrics based on information theory that can quan-
tify consistency in trial-by-trial response to reward feedback 
using a relatively small number of trials (Trepka et al., 2021). 
These metrics provide a convenient, model-free tool to meas-
ure randomness in adaptive choice behavior and guide further 
model development. More importantly, these metrics can be 
computed from any segment of the task, enabling semi-con-
tinuous quantification of behavioral adjustments over time.

Here, we used these metrics to study adjustments in learn-
ing and choice behavior to different types of uncertainty in 
the reward environment. To that end, we reanalyzed data from 
mice and monkeys that performed similar dynamic foraging 
in which the selection of two choice alternatives was rewarded 
probabilistically, while baseline reward probabilities switched 
after a certain number of trials (referred to as the block length). 
We investigated the influence of uncertainty in determining 
the better option as well as uncertainty about the time of 
block switches on learning and choice using multiple met-
rics based on information theory (which for brevity, we refer 
to as entropy-based metrics). These include overall entropy of 
choice strategy in terms of stay or switch, entropy of reward-
dependent strategy, entropy of option-dependent strategy, 
and mutual information between reward outcome and choice 
strategy. While incorporating the probability of win-stay and 
lose-switch strategies, these metrics can better summarize local 
response to reward feedback, which then can be used to predict 
global choice behavior or its adjustments (Trepka et al., 2021).

With regard to uncertainty in determining the better option 
based on reward feedback, we hypothesized that increased 
uncertainty should result in slower learning to allow more 
accurate estimation of reward probabilities and/or, in more 
stochastic behavior, to enable more exploration. This could 
happen via different nonexclusive mechanisms such as a 
decrease in the learning rates and an overall increase in the 
stochasticity of choice. In addition, we hypothesized that 
when blocks are longer than expected, choice or adopted 
choice strategy would be more random, as animals, in the 
absence of any changes in the environment, more strongly 
expect changes in reward probabilities. Finally, expectation 
of block switches could interact and/or depend on the level 
of uncertainty in determining the better option.

Briefly, we found that stochasticity in choice behavior and 
response to reward feedback measured by entropy-based met-
rics were systematically affected by uncertainty about the bet-
ter option and expectation of block switches in both mice and 
monkeys. Further, by fitting RL models to different groups of 
choice data identified by applying entropy-based metrics, we 
identified possible mechanisms by which different types of 
uncertainty influence behavior across the two species.

Methods

Experimental paradigms

To examine whether and how animals use regularities and 
uncertainty of the reward environment to guide their behavior, 
we reanalyzed data from mice and monkeys performing two 
dynamic foraging tasks with variable block lengths. There 
were key similarities in these experiments that allowed us 
to compare performance directly across species. First, while 
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baseline reward probabilities remained fixed within a block 
of trials, probability of reward assignment on the unchosen 
option increased over time in a similar fashion in both tasks. 
Second, the block length changed from block to block, but the 
range of block lengths were similar across the two species: 
with 40–100 trials in mice and 50–150 trials in monkeys.

Mouse experiment In the mouse experiment (Bari et al., 2019), 
water-restricted mice were habituated for 1–2 days and head-
restrained for the task. Eighteen male C57BL/6J (The Jackson 
Laboratory, 000664) mice ages 6–20 weeks were used in the 
experiment. A "go-cue" was signaled by an odor, after which the 
mice made a leftward or rightward lick toward one of the two 
water ports for a probabilistic reward (Fig. 1A). Reward was a 
drop of water (2–4 μL). In 5% of trials, a "no-go cue" was sig-
naled by a different odor, after which licks were neither rewarded 
nor punished. Each trial was followed by an intertrial interval 
(ITI), of which the duration was drawn from an exponential dis-
tribution with a rate parameter of 0.3 with a maximum of 30s.

Reward probabilities were assigned to the left and right 
water ports, with one port yielding a higher reward probability 
(better option) than the other (worse option). Rewards were 
baited, such that if a reward was assigned to a particular side 
and was unchosen, the reward would remain there until that 
side was selected. This rule implies that the reward probability 

of an unchosen option becomes larger with the number of 
trials unchosen, mimicking ecological conditions in which 
unvisited foraging options will become more rewarding with 
time. Reward probabilities were chosen from 16 different 
sets of reward schedules (Fig. S1C). The majority of sessions 
(88.8%) used two sets of reward probabilities equal to 0.4 and 
0.1 (40/10) and 0.4 and 0.05 (40/5). The two reward prob-
abilities were held constant for a fixed number of trials (a 
block) and reversed (block switches or reversal) without any 
cues to the animals. The lengths of each block were drawn 
from a uniform distribution spanning 40–100 trials. On rare 
occasions when mice demonstrated strong side biases, block 
lengths were shortened or lengthened.

For a given day of experiment, mice performed one of two 
versions of the task, a two-probability task (523 sessions) and 
a multiple-probability task (only five sessions). In the two-
probability task, only two reward probabilities were assigned 
from the pool of possible probabilities and reversed for a 
given session. In the multiple-probability task, the better and 
worse options were still reversed after block switches, but 
more than two reward schedules were used for a given session. 
These probabilities were chosen such that the ratios would 
equal {8:1, 6:1, 3:1, 1:1}, to match parameters from the previ-
ous experiment by Sugrue and colleagues (2004). A majority 
of the mice (16 out of 18) performed the two-probability task 

Fig. 1  Application of information theory to studying choice behav-
ior under uncertainty. The stochastic nature of the reward environ-
ment results in uncertainty in reward outcome that can be measured 
using Shannon entropy (H(X)). The animal used information in the 
environment to generate choice that can be quantified as repeating the 
previous choice (stay) or switching to the alternative choice option 

(for two-alternative choice tasks). Randomness in choice can also be 
measured using Shannon entropy (H(Y)). The link between previous 
reward outcome and animals’ strategy can be quantified using condi-
tional entropy (e.g., H(Y|X)) measuring uncertainty in strategy given 
reward outcome in the previous trial, or mutual information (I(X; Y)) 
measuring shared information. (Color figure online)
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only. For the other two mice, multiple-probability sessions 
were randomly interleaved with two-probability sessions. In 
total, 18 mice performed 3,768 blocks during 528 sessions 
(mean 7.13 block switches per session). Here, we focus our 
analyses on the two-probability task only because most of 
the mouse experiment was done using this task, and there 
was a significant difference between their performance in the 
two-probability and multiple-probability tasks. All behavioral 
tasks were performed in a dark sound-attenuated chamber, 
with white noise delivered between 2 and 60 kHz.

All surgical and experimental procedures were in accordance 
with the National Institutes of Health Guide for the Care and 
Use of Laboratory Animals and approved by the Johns Hopkins 
University Animal Care and Use Committee. This experimental 
setup and some analyses of the data for electrophysiological 
recordings and matching behavior have been reported previ-
ously (Bari & Gershman, 2023; Bari et al., 2019; Trepka et al., 
2021). All analyses reported in this study are novel.

Monkey experiment In the monkey experiment (Tsutsui et al., 
2016), two adult male macaque monkeys (Macaca mulatta) 
weighing 5.5–6.5 kg were trained in a reward-based foraging 
task. To initiate a trial, the monkeys fixated on the red fixation 
spot in the center of a computer screen and contacted a touch-
sensitive, immobile resting key at elbow height. After fixa-
tion, two stimuli (two different visual fractal objects, A and B) 
appeared simultaneously on the screen to the left and right of 
the fixation point (5° visual angle). Two stimuli were assigned 
pseudorandomly to the left and right positions and were not 
related to reward. To make a choice, each monkey made a sac-
cadic eye movement to the target of its choice within a time 
window of 0.25–0.75s (Fig. 1B). Reward was a drop of juice 
(0.7 ml) delivered via a spout in front of the animal’s mouth.

The reward probabilities of objects A and B were inde-
pendently calculated in every trial, such that the instantane-
ous reward probability increased for the unchosen option as a 
function of the number of consecutive unchosen trials (Eq. 1):

where P is the instantaneous reward probability of an object, 
P0 is an experimentally imposed, baseline reward probability, 
and n is the number of trials that the object had been consecu-
tively unchosen. This equation implies that an unchosen option 
became more rewarding the longer it remained unselected. The 
reward probability fell back to the baseline probability with 
every choice of that object, regardless of whether that choice 
was rewarded or not. Functionally, this algorithm implements 
the identical baiting mechanism used in the mouse experi-
ment (also see Eq. 2 in Bari & Gershman, 2023). The baseline 
reward probabilities (P0) were chosen from 20 different sets of 
reward schedules (Fig. S1D). The two baseline probabilities 
were held constant for each option for a fixed number of trials 

(1)P = 1 −
(
1 − P0

)n+1
,

(block) and changed across blocks (block switches) such that 
the previously better option (with higher P0) became the worse 
option (lower P0). The lengths and reward schedules of each 
block changed randomly from one block to the next, typically 
ranging from 50 to 150 trials without any cues to the animals. 
In total, the two monkeys performed 251 blocks during 103 
session days (mean 2.43 block switches per session).

All animal procedures conformed to the US National 
Institutes of Health Guidelines and were approved by the 
Home Office of the United Kingdom. This experimental 
setup and some analyses of the electrophysiological record-
ing data have also been reported previously (Tsutsui et al., 
2016). All analyses reported in this study are novel.

Entropy‑based metrics

Here, we utilized previously introduced  metrics based on 
information theory to quantify learning and choice behav-
ior (Trepka et al., 2021). This includes entropy of choice 
strategy (H(str)), conditional entropy of reward-dependent 
strategy (ERDS), conditional entropy of option-dependent 
strategy (EODS), mutual information between reward out-
come and choice strategy (MIRS), and mutual informa-
tion between choice and choice strategy (MIOS) (Fig. 1). 
Briefly, H(str) measures consistency or randomness in the 
adopted choice strategy in terms of stay or switch, whereas 
ERDS and EODS measure the same consistency but con-
sidering reward feedback and/or choice in the previous trial. 
MIRS, on the other hand, measures the amount of informa-
tion shared between the adopted strategy (stay or switch) 
and reward feedback (win or lose). The maximum value for 
the entropy-based measures H(str), ERDS, and EODS is 
equal to 1 corresponding to completely random behavior 
(equally adopting stay or switch strategy) or no relation-
ship between choice strategy and the previous reward or 
choice outcome. In contrast, the MIRS and MIOS have the 
maximum value of 1 if reward or choice outcome in the pre-
vious trial completely determines the choice strategy. Con-
ceptually, metrics based on conditional entropy and mutual 
information aim to capture the degree to which the animal’s 
choice behavior can be explained or predicted by the infor-
mation prior to that decision, such as by presence of reward 
(ERDS, MIRS) or previous selection (EODS, MIOS).

More specifically, ERDS is calculated as follows:

where str is strategy coded as stay (1) or switch (0), and rew 
is the previous reward outcome coded as reward (1) or no 

(2)

ERDS = H(str|rew) = H(str) − I(str;rew)

= −

(
P(stay,win) × log2

(
P(stay,win)

P(win)

)
+ P(switch,win) × log2

(
P(switch,win)

P(win)

)

+ P(stay, lose) × log2

(
P(stay, lose)

P(lose)

)
+ P(switch, lose) × log2

(
P(switch, lose)

P(lose)

) )
,



Cognitive, Affective, & Behavioral Neuroscience 

1 3

reward (0). As seen above, the more traditional measures 
win-stay and lose-switch appear in this equation as P(stay,win)

P(win)
 

and P(stay,lose)
P(lose)

 , respectively. Additionally, H(str) above is the 
entropy of strategy (stay or switch), and I(str; rew) is the 
mutual information of strategy and reward (MIRS):

(3)
H(str) = −

(
P(stay) × log2P(stay) + P(switch) × log2P(switch)

)
.

(4)

MIRS = I(str;rew) = −

(
P(stay,win) × log2

(
P(stay,win)

P(stay) × P(win)

)

+ P(switch,win) × log2

(
P(switch,win)

P(switch) × P(win)

)

+ P(stay, lose) × log2

(
P(stay, lose)

P(stay) × P(lose)

)

+P(switch, lose) × log2

(
P(switch, lose)

P(switch) × P(lose)

))
.

As these terms suggest, ERDS measures the dependence 
of adopting a response strategy on reward feedback (win or 
lose). Lower ERDS values correspond to decreased random-
ness in the variable and thus more consistency in the utilized 
strategy.

Similarly, we also used the entropy of option-dependent 
strategies (EODS), equal to a conditional entropy of stay/
switch strategy (str) given the choice of better or worse 
option from the previous trial (opt):

where opt is the previous choice in terms of the better or 
worse option (1 = better option and 0 = worse option), and 
I(str; opt) is the mutual information of strategy and option 
(MIOS):

Note that from the above equations, ERDS = 
H(str)− MIRS and EODS = H(str)− MIOS. This implies 
that, for example, increased ERDS in one setting could be 
due to increased H(str) or decreased MIRS, or both.

(5)

EODS = H(str|opt) = H(str) − I(str;opt)

= −

(
P(stay, better) × log2

(
P(stay,better)

P(better)

)
+ P(switch, better) × log2

(
P(switch,better)

P(better)

)

+ P(stay,worse) × log2

(
P(stay,worse)

P(worse)

)
+ P(switch,worse) × log2

(
P(switch,worse)

P(worse)

) )
,

(6)

MIOS = I(str;opt) = −

(
P(stay, better) × log2

(
P(stay, better)

P(stay) × P(better)

)

+ P(switch, better) × log2

(
P(switch, better)

P(switch) × P(better)

)

+ P(stay,worse) × log2

(
P(stay,worse)

P(stay) × P(worse)

)

+P(switch,worse) × log2

(
P(switch,worse)

P(switch) × P(worse)

))
.

.

Quantifying expected uncertainty and expectation 
of block switches

In both mouse and monkey experiments, baseline reward 
probabilities associated with two choice options were fixed 
within a block of trials, but block lengths changed randomly 
from one block to the next. This means that within a given 
block, animals could develop an estimation for uncertainty 
in reward feedback, often referred to as expected uncertainty 
corresponding to uncertainty attributable to the stochastic or 
probabilistic nature of reward outcome (Soltani & Izquierdo, 
2019). Additionally, the animals could form an expectation 
about block lengths or how long reward probabilities remain 
unchanged. Such expectation could have significant effects on 
behavior, because the animals could erroneously perceive that 
a block switch happens after a certain number of trials have 
passed. Both types of expectation and their effects on behav-
ior might be read from the animal’s responses, such as from 
the changes in the adopted strategies captured by ERDS or 
EODS. Therefore, we defined different measures to quantify 
the different types of expectation as explained below.

Expected uncertainty As the animals performed a wide 
range of different reward schedules (Fig. S1), we defined 
expected uncertainty as the difference between baseline 
reward probabilities for better (PB) and worse option (PW) for 
each block: ΔP = PB − PW. For the monkey experiment, base 
reward probabilities (P0 ) for better and worse options were 
used to compute this metric. The larger the quantity ΔP, the 
easier it is for the animal to discern which is the better option, 
and hence, experienced less uncertainty in determining the 
better option. This uncertainty was deemed “expected” in 
the sense that PB and PW were stable for the entire block 
and reflected stochasticity in the environment. We note quan-
tifying expected uncertainty with ΔP is different from the 
expected uncertainty defined as the overall variance in reward 
outcome, which can be computed using the average absolute 
value of reward prediction error (Soltani & Izquierdo, 2019).

Using ΔP, we further categorized the blocks into more 
uncertain and less uncertain blocks based on the median split 
of ΔP within each subject. Blocks that had larger ΔP than the 
median were categorized as less uncertain, and smaller ΔP 
as more uncertain blocks. We hypothesized that increased 
uncertainty should result in more stochastic behavior, and 
therefore more uncertain blocks with ΔP smaller than 
median would be characterized by higher entropies or lower 
mutual information. Overall, the mouse experiment had a 
median ΔP of 0.35 (M = 0.330, SD = 0.042), and the monkey 
experiment had median ΔP of 0.25 (M = 0.281, SD = 0.122).



 Cognitive, Affective, & Behavioral Neuroscience

1 3

Expected block length As the animals experienced a range 
of different block lengths, we hypothesized that the animals 
would keep an expectation of how long the current block is, 
and that it is updated at every block switch. More specifi-
cally, considering Li (length of block i), we calculated the 
expected block length E[Li] as follows:

where 𝛾E is an update rate (for computing block-length 
expectation) controlling how much to weigh the recent evi-
dence, analogous to the learning rate in the reinforcement 
learning models. The amount of update depends on the block 
length prediction error (BLPE) defined as the difference 
between actual and expected block length at block i:

Negative BLPE indicates that a given block was shorter 
than expected, and positive BLPE suggests that a block was 
longer than the expected length.

Equation 7 implies that, the larger the 𝛾E is, the animal 
weighs the recent evidence more so to update the estimated 
block length for the next block. For our analysis, we set 𝛾E 
= 0.1. For the very first block, E[L1] was set to the median 
block length of each dataset: E[L1] = 54 and E[L1] = 51 
for mice and monkeys, respectively. Any sessions that did 
not have any block switches were omitted from this update, 
and E[Li] was held constant for that block, given that it did 
not contribute to forming an expectation of block switches. 
Mouse data did not have such single-block sessions, whereas 
monkey data had 40 blocks that terminated without block 
switches (15.9% of total blocks).

Alternatively, the expected block length can be defined 
from a window of size N, as the average block length for the 
past N blocks:

Here, the larger window size N corresponds to smaller 
update rate 𝛾E, meaning that the animals estimate expected 
block length from a longer timescale.

Finally, we used BLPE (Eq. 8) to categorize blocks as 
shorter than expected (SE) or longer than expected (LE) 
blocks, and compared behavior across these two types 
of blocks. We hypothesized that animals could develop 
an expectation of block switches through experience and 
use this to modulate their behavior. More specifically, 
we assumed that if the actual block length (Li) is past the 
expected length (E[Li]), the animal would be more likely 
to incorporate reward feedback as if this feedback signals 
changes in the environment. In terms of entropy measures, 
this could be reflected in higher entropies of reward-depend-
ent (ERDS) or option-dependent strategy (EODS), and/

(7)E
[
Li+1

]
= E

[
Li
]
+ 𝛾E

(
Li − E

[
Li
])
, (i > 2),

(8)BLPEi = Li − E
[
Li
]
.

(9)E
[
Li
]
N
=

1

N

∑i−1

j=i−N
Lj (i > 2).

or lower mutual information between strategy and reward 
(MIRS) or previous option (MIOS).

Reinforcement learning (RL) models and fitting 
choice data

RL models We fit the choice behavior of mice and monkeys 
using four standard reinforcement learning models. The first 
model, which we refer to as RL1, has two parameters: a sin-
gle learning rate 𝜶 and an inverse temperature 𝜷 representing
choice consistency. The value of the chosen option (QC) is 
updated as follows:

where C ∈ {Left, Right} for mice and C ∈ {Object A, Object 
B} for monkeys, and R indicates presence (1) or absence (0) 
of reward on the given trial t.

The second model, referred to as  RL1decay, has an addi-
tional parameter decay rate 𝜸decay for the value of the uncho-
sen option. In this model, the value of the unchosen option 
(QU) decays passively, using the following equation:

The value estimates for the chosen option were updated 
as in Eq. 10.

The third and fourth models, RL2 and  RL2decay, are iden-
tical to RL1 and  RL1decay except that there are now two sepa-
rate learning rates for rewarded and unrewarded trials (𝜶 + 
and 𝜶 -, respectively). For this set of models, the value of the 
chosen option (QC) was updated as follows:

RL2 did not include a decay term, whereas  RL2decay fol-
lowed a decay equation for an unchosen option as in Eq. 11.

For all models above, the probability of choosing an out-
come was then computed using a softmax function:

where j and k correspond to Left and Right for mice, and 
Object A and Object B for monkeys. The minimum and 
maximum values of 𝜷 were set to 1 and 100, respectively.

Model fitting process We used the standard maximum 
likelihood estimation method to fit and estimate the best-
fit parameters for the described models. One set of model 
parameters was fit to each block of mice and monkeys’ 
choice data. When fitting and simulating RL models with 
mouse data, we treated infrequent miss trials (average of 

(10)QC(t + 1) = QC(t + 1) + �
(
R − QC(t)

)
,

(11)QU(t + 1) = QU(t + 1) − �decay
(
QC(t)

)
.

(12)

QC(t + 1) =

{
QC(t + 1) + �+

(
R − QC(t)

)
if R = 1,

QC(t + 1) + �−
(
R − QC(t)

)
if R = 0.

(13)Pj(t) =
(
1 + e−�(Qj(t)−Qk(t))

)−1

,
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3.64 per session) and no-go trials (average of 16.83 per ses-
sion) as if they had not occurred. For the very first block 
of the session only, value estimates for the two options (Q) 
were initialized at 0.5. For the consequent blocks after block 
switches (within the same session), initial values were set 
equal to Q values from the last trial of the previous block, 
given by its best-fit parameters. Fitting was performed using 
the MATLAB optimization function fmincon, repeating the 
search for 10 random parameter values.

To quantify goodness of fit, we computed the Akaike 
Information Criterion (AIC) for each block of the mouse 
and monkey datasets:

where p is the number of free parameters in a given model. 
Since each block had different number of trials, we further 
normalized the AIC by the number of trials in each block, 
i.e., computing AIC per each trial:

where L is the number of trials or length of each block. We 
determined the winning model as the one with the lowest 
mean AICnorm across all blocks.

We further computed the probability that a given model 
is the best model for the dataset given the set of candidate 
models (Akaike weights). Specifically, Akaike weights (wi) 
for the i-th model (Mi) in a set of n models were computed 
as follows:

(14)AIC = −2 × logLikelihood + 2 × p,

(15)AICnorm =
AIC

L
,

(16)
ΔAICnorm

�
Mi

�
= AICnorm

�
Mi

�
−min

�
AICnorm

�
M1

�
,AICnorm

�
M2

�
,… ,AICnorm

�
Mn

��
,
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�
−

1

2
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��
∕
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exp
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−
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��
,

where AIC
norm

(
M

i

) indicates the mean AICnorm of Mi across all 
blocks, and ΔAIC

norm

(
M

i

) is the difference between the mean 
AICnorm of Mi and the minimum mean AICnorm among all 
the candidate models.

Statistical analysis and visualization

Due to log-transformation in the entropy equations, the dis-
tributions of most of the entropy-based metrics are highly 
skewed (Fig. S2). Accordingly, we primarily employed a 
nonparametric test: a two-sample Kolmogorov–Smirnov test 
with a null hypothesis that the two samples are from the 
same continuous distribution. The test statistic D for this 
test measures the difference between the CDFs of the two 
distributions.

To avoid confounds with the data size and the computed 
entropy values, we kept the same bin size (number of trials) 
from each block for computing the metrics. Specifically, we 
selected the last N trials of each block while ensuring that 10 
trials had passed after the start of each block. Blocks that had 
too few trials to compute reliable entropy values were removed 
from the analysis. To minimize the number of excluded blocks 
while keeping its proportion consistent across datasets, we set 
N = 30 for the mouse dataset and N = 20 for the monkey data-
set. This removed 511 blocks out of 3768 (13.56%) for mice 
and 36 blocks out of 251 (14.34%) for monkeys.

Finally, as an auxiliary to the Kolmogorov–Smirnov 
test, we also used a permutation test to compare the 

entropy-based metrics between two given conditions. More 
specifically, for each permutation, we randomly assigned 
blocks (without replacement) into two groups with sample 
size n1 or n2, corresponding to the total number of blocks 
in the two conditions that were being compared. A single 
entropy-based metric was computed for each type of block 
by concatenating all trial vectors from the sampled permuta-
tion. For consistency, we excluded the same 10 trials after 
the start of each assigned block. Test statistics for each sam-
ple were then computed by taking the difference in metrics 
between the first and the second condition. We computed 
the p-value by computing the proportion of sampled test 
statistics that were as extreme as the observed value.

All data analysis was performed in MATLAB 2020b (The 
MathWorks, Natick, MA, USA). All violin plots in the figures 
were created using an adapted version of a custom toolbox 
al_goodplot in MATLAB (Legouhy, 2022). In the violin plots, 
the rectangles within the kernel distributions indicate the 25th, 

50th (black horizontal line), and 75th percentiles, and circles 
indicate the mean of the data. For the visualization of the 
entropy time course, we used confidence intervals from the 
basic bootstrapping method which computes the difference 
between observed and sampled test statistics (Davison & 
Hinkley, 1997). As mentioned above, to determine statisti-
cal significance, a nonparametric test (Kolmogorov–Smirnov 
test) was primarily used. A parametric t test was used where 
appropriate, after verifying that the sample distribution was 
symmetric and approximately normal. All tests were two 
sided and alpha was set at 0.05, except otherwise mentioned.

Results

To study how uncertainty related to different types of 
regularities in the reward environment affects learning 
and choice behavior, we used multiple metrics based on 
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information theory (Fig. 1) to reanalyze data from two 
dynamic foraging tasks in mice and monkeys. In both 
tasks, animals were trained to choose between two alter-
native choice options (left and right port for mice, and 
two abstract pictures for monkeys; Fig. 2A–B) in order 
to obtain reward. Reward, a drop of water for mice or a 
drop of juice for monkeys, was delivered probabilistically 
and independently of the unchosen option (see below for 
more details). After a variable number of trials (a block) 
the reward probability changed for the two options without 
any cue to the animals, often resulting in a switch between 
the better and worse options (sometimes referred to as 

a reversal). The length of each block changed randomly 
from one block to the next.

In the mouse experiment, rewards were baited such 
that if reward was assigned on a given side and that side 
was not selected, reward would remain on that side until 
the next time that side was selected. The monkey experi-
ment had a functionally identical baiting mechanism, 
where instantaneous reward probability increased for the 
unchosen option such that selection of the unchosen option 
became more rewarding as time since that option was cho-
sen increased. The reward probability for a given option 
fell back to the assigned baseline probability with every 

Fig. 2  Experimental paradigms and example behavioral results in 
mice and monkeys. Timeline of a single trial during experiments in 
mice (A) and monkeys (B). To initiate a trial, mice received an olfac-
tory go-cue (or no-go cue in 5% of trials), and monkeys fixated on a 
central point. Animals indicated a choice by licking (mice) or mak-
ing a saccadic eye movement (monkeys) toward their choice among 
the two options (left/right port for mice and two abstract pictures 
for monkeys). Reward (a drop of water for mice and a drop of juice 
for monkeys) was delivered stochastically based on dynamically 
assigned reward probability on the chosen option. C, D Average 
choice and reward outcomes using a moving window of 10 trials for 

a representative session in mice (C) and monkeys (D). Numbers in 
the colored boxes indicate reward probabilities (in %) of two options 
within each block. E, F Time course of performance and consist-
ency in reward-dependence strategy in example sessions in mice (E) 
and monkeys (F). Performance (probability of choosing the better 
option, P(Better)) and conditional entropy of reward-dependent strat-
egy (ERDS) are computed from a moving window of 10 trials from 
the same example sessions. Numbers in the colored boxes show the 
length L (number of trials) of each block. Horizontal lines show the 
overall metrics during each block, computed from all trials in the 
block (excluding ten trials after block switch). (Color figure online)
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choice of that option, irrespective of whether that choice 
was rewarded or not.

Overall, both mice and monkeys learned reward associa-
tions, and their choices closely tracked the reward schedules, 
reflected in the close match between the probability of choos-
ing the better option, P(Better), and the relative probability 
of reward for that option (Fig. 2C–D). As expected, when 
animals chose the better option more consistently, condi-
tional entropy of reward-dependent strategy (ERDS) was 
lower (Fig. 2E–F). This was also reflected as a negative cor-
relation between P(Better) and ERDS (Spearman’s correla-
tion, r = −0.647, p = 0), option-dependent strategy (EODS; 
r = −0.836, p = 0), and baseline entropy of strategy (H(str); 
r = −0.675, p = 0). In monkeys, however, the relationship 
between performance and ERDS was not significantly cor-
related (r = −0.0185, p = .788), whereas higher performance 
was associated with lower EODS only (r = −0.400, p = 
1.20×10-9). Interestingly, H(str) was positively correlated 
with performance (r = 0.315, p = 2.50×10-6), indicating that 
an overall random strategy facilitated the performance in 
monkeys.

Entropy‑based metrics capture changes in behavior 
due to block switches

To examine animals’ response to changes in reward schedule 
caused by block switches, we next computed different behav-
ioral metrics before and after those events. In order to deter-
mine whether the metrics changed significantly after block 
switches, we used a paired-sample t test for each pair of met-
rics around block switches. As expected, the overall perfor-
mance decreased after block switches for both mice (Fig. 3A), 
t(2992) = 27.6, p = 1.41×10-149; Cohen’s d = 0.52, and mon-
keys (Fig. 3D), t(139) = 6.13, p = 8.48×10-9; Cohen’s d = 
0.499. The decrease was more pronounced for mice, because 
before block switches mice exhibited stronger selection of the 
better side (M = 0.744, SD = 0.204) than the monkeys’ selec-
tion of the better stimulus (M = 0.617, SD = 0.11).

Comparisons of entropy-based metrics in mice revealed 
that block switches increased inconsistency in reward-depend-
ent choice strategy (ERDS; Fig. 3B), t(2992) = −10.12, p = 
1.07×10-23; Cohen’s d = −0.165, mainly by increasing the 
overall entropy in choice strategy (stay vs. switch) measured 
by H(str) (Fig. 3A), t(2992) = −10.01, p = 3.33×10-23; Cohen’s 
d = −0.165, as there was no evidence for a change in the link 
between reward outcome and adopted choice strategy meas-
ured by mutual information of reward-dependent choice strat-
egy (MIRS; Fig. 3B), t(2992) = −0.32, p = 0.750; Cohen’s d 
= −0.01. Similarly, mice became less consistent in how they 
stayed on or switched from the better option measured by 
EODS (Fig. 3C), t(2992) = −11.8, p = 1.95×10-31; Cohen’s 
d = −0.197, whereas the link between selected option and 
adopted choice strategy (measured by MIOS) became weaker 

after block switches (Fig. 3C), t(2992) = 5.23, p = 1.80×10-7; 
Cohen’s d = 0.093.

In contrast, comparisons of entropy-based metrics in 
monkeys showed that block switches only made the link 
between reward outcome and choice strategy (measured by 
MIRS) weaker (Fig. 3E), t(139) = 2.41, p = .0171; Cohen’s 
d = 0.174, without any changes in reward-dependent choice 
strategy (Fig. 3E), t(139) = −0.82, p = .411; Cohen’s d = 
−0.049, or the overall choice strategy, H(str) (Fig. 3D), 
t(139) = 1.73, p = .0862; Cohen’s d = 0.139. Similarly, the 
link between the selected option and adopted choice strat-
egy (measured by MIOS) became weaker right after block 
switches (Fig. 3F), t(139) = 5.49, p = 1.85×10-7; Cohen’s 
d = 0.435, with a noticeable but not statistically signifi-
cant change in option-dependent choice strategy, EODS 
(Fig. 3F), t(139) = −2.04, p = .0429; Cohen’s d = −0.16.

The similar and contrasting effects of block switches in 
the two species could also be seen from the time course 
of behavioral metrics over time (Fig. 3G–J). Comparing 
the consistency of choice behavior in mice and monkeys 
around block switches, we observed that the monkeys’ 
behavior was more random and less predictable by pre-
vious reward outcome or choice. Kolmogorov–Smirnov 
tests between mouse and monkey data revealed signifi-
cantly higher H(str) (Fig. S2D), D = 0.441, p = 5.15×10-35; 
ERDS (Fig.  S2B), D = 0.276, p = 5.85×10-1014; and 
EODS (Fig. S2C), D = 0.361, p = 1.19×10-23, in mon-
keys. Although MIOS did not significantly differ between 
the two species (Fig. S2F), D = 0.0944, p = .0517, MIRS 
was slightly higher in monkeys (Fig. S2E), D = 0.231, p = 
5.93×10-10. These opposing patterns of MIRS and ERDS 
across species can be explained by noticing that, compared 
with mice, the monkeys’ larger shared information between 
reward outcome and subsequent choice strategy (measured 
by MIRS) was not strong enough to result in more con-
sistent reward-dependent strategy (measured by ERDS), 
perhaps due to an overall more random choice strategy 
(H(str)).

Comparing the entropy metrics within each species 
using paired t tests, we found that mice exhibited an option-
dependent strategy more so than a reward-dependent one: 
EODS tended to be lower than ERDS, t(3226) = 11.49, 
p = 5.48×10-30; Cohen's d = 0.202, and MIOS tended to 
be higher than MIRS, t(3226) = −11.49, p = 5.48×10-30; 
Cohen's d = −0.202. In contrast, monkeys showed more of a 
reward-dependent strategy compared with an option-depend-
ent one, as indicated by lower ERDS than EODS, t(214) = 
−2.36, p = .0193; Cohen's d = −0.161, and higher MIRS 
than MIOS, t(214) = 2.36, p = .0193; Cohen's d = 0.161.

This pattern of the adopted strategy was consistent across 
individuals within each species. For mice, thirteen individu-
als (72.2% of total) had a lower average EODS than ERDS, 
and for eight of these individuals this effect was statistically 
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significant (two-sided paired t test, p < .05; Fig. S3A). For 
monkeys, both individuals had a lower average ERDS than 
EODS, but only one showed a statistically significant dif-
ference (p = .0206 and p = .4980; Fig. S3B). We further 
addressed whether the adopted strategy was also consistent 
across sessions for each individual by examining how the 
difference between ERDS and EODS changed as a func-
tion of time. Negative values of (ERDS − EODS) suggest 

preference for a reward-dependent strategy, whereas positive 
values would suggest preference for an option-dependent 
strategy. For each individual, we regressed these quanti-
ties by the number of sessions completed (Fig. S3C–D). 
For mice, we found that twelve individuals (66.7% total) 
showed positive regression coefficients, with four for which 
the effect was statistically significant (Fig. S3C). In con-
trast, six individuals (33.3%) showed a negative fitted slope, 

Fig. 3  Changes in performance and behavioral metrics around block 
switches. A–F Violin plots show distributions of performance and 
entropy-based metrics computed from 15 trials before and after block 
switches in mice (A–C) and monkeys (D–F). In the violin plots, the 
rectangles within the kernel distributions indicate 25th, 50th (median, 
black horizontal line), and 75th percentiles. Circles indicate the mean 
of the data. Insets show histograms of paired difference between met-
rics before and after each block switch. Reported values are Cohen’s 
d and p values based on paired-sample t test comparing before and 

after block switches (two-sided test, corrected for two multiple 
comparisons). G–J Time course of different metrics around block 
switches. Plots show running averages of metrics computed from the 
same trials in time relative to block switches (vertical dotted line) 
across all blocks of the experiment. Shaded error bars indicate 95% 
confidence intervals from bootstrapping method using N = 10,000 
samples for each trial point. Overall, mice had significantly lower 
H(str), ERDS, EODS, and MIRS than monkeys. (Color figure online)
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with two for which the effect was statistically significant. 
For monkeys, both individuals showed a negative slope, but 
none were statistically significant (Fig. S3D). These results 
suggest that, through time, the majority of mice preferred 
to adopt an option-dependent strategy, whereas monkeys 
tended toward a reward-dependent strategy.

Effects of environmental regularities 
and uncertainty on behavior

One of the main aims of this study was to investigate how ani-
mals’ choice behavior is affected by regularities and accom-
panied uncertainty in the reward environment. To answer 
this question, we first ran exploratory regression analyses 
to predict behavioral metrics based on a few experimental 
parameters (Figs. S4, S5). This included the difference in 
reward probabilities for the better and worse choice options 
(PB and PW) reflecting uncertainty in determining the better 
option, the sum of reward probabilities measuring richness 
of the reward environment, and the block length in the previ-
ous and current blocks, aiming to measure whether animals 
developed an expectation about block lengths and the stabil-
ity of reward environment. We note, however, that regression 
may not be the most suitable analysis because of the non-
linear nature of entropy-based metrics (Fig. S2). Neverthe-
less, these regression analyses pointed to the effects of a dif-
ference in reward probabilities and block length on multiple 
entropy-based metrics, indicating that certain regularities in 
the environment affected learning and choice behavior.

To better understand these effects, we next grouped 
blocks based on the block length and the difference in reward 
probabilities and computed different metrics for each group 
of blocks. First, we divided blocks based on the difference 
in reward probabilities for the better and worse options and 
categorized blocks into more uncertain and less uncer-
tain blocks based on the median split of PB − PW in each 
subject (see Methods for more details). The difference in 
reward probabilities measures uncertainty in determining 
the better choice option. Blocks that had larger PB − PW than 
the median were categorized as less uncertain and those 
with smaller PB − PW as more uncertain blocks. Second, 
we also divided blocks depending on whether the current 
block length was longer than expected or not. More specifi-
cally, we assumed that animals developed an expectation of 
block switches by estimating a value for the length L of a 
block at each block i, denoted E[Li], updated at every block 
switch. This update was done using the block length pre-
diction error (BLPE) equal to the difference between the 
actual and expected block lengths (see Methods for more 
details). Negative BLPE corresponds to a block that was 
shorter than expected (SE blocks) based on the animal’s 
experience, whereas positive BLPE indicates that a block 
was longer than expected (LE blocks).

With regard to uncertainty in determining the better option, 
our hypothesis was that increased uncertainty should result in 
slower learning and/or more stochastic behavior. In addition, 
we hypothesized that when blocks are longer than expected 
(LE blocks), choice or adopted choice strategy would be more 
random as animals expect changes in reward probabilities 
more strongly and in the absence of any changes in the envi-
ronment. Finally, expectation of block switches could interact 
or depend on the level of uncertainty in the environment.

Supporting these hypotheses, we found that entropy-based 
metrics were systematically affected by both uncertainty 
and expectation of block switches, but differently for mice 
and monkeys. In mice, entropy of choice (H(str); Fig. 4A), 
reward-dependent choice strategies (ERDS; Fig. 4B), and 
option-dependent choice strategies (EODS; Fig. 4C) were 
significantly larger in the more uncertain environments, with 
no significant difference between mutual information (MIRS 
or MIOS; Fig. 4B, C). Considering the link between entro-
pies, conditional entropies and mutual information (ERDS = 
H(str) − MIRS and EODS = H(str) − MIOS), these results 
suggest that the observed increase in H(str) could be due to 
changes in the effects of reward feedback on choice. In mon-
keys, however, there was a trend toward a decrease (instead 
of increase) in the entropy of choice (H(str)), suggesting 
that the animals’ strategy became more consistent when 
reward probabilities were closer to each other; i.e., when 
the environment was more uncertain (Fig. 5A; Kolmogo-
rov–Smirnov test; D = 0.277, p = .0250). Post hoc analysis 
revealed that this decrease in H(str) in monkeys was due 
to a higher probability of switching in the more uncertain 
environment (M = 0.668, SD = 0.11) compared with the less 
uncertain one (M = 0.508, SD = 0.142). Therefore, monkeys 
increased their exploration in more uncertain environments.

With regard to expectation of block switches, we found 
that in mice, ERDS was significantly increased for LE 
compared with SE blocks (Fig. 4E; Kolmogorov–Smirnov 
test; D = 0.0583, p = .0122). H(str) and EODS followed a 
similar trend, but the increase was not significant (Kolmogo-
rov–Smirnov test; H(str): D = 0.0492, p = .0529; EODS: 
D = 0.0493, p = .0521; Fig. 4D, F). The changes in mutual 
information (MIRS, MIOS) were small or insignificant 
(Fig. 4E, F). The effect of expectation of block switches 
on ERDS in the absence of any clear changes in H(str) and 
MIRS suggests multiple forms of adjustments including 
changes in learning and stochasticity in choice. Similarly, 
expectation of block switches increased ERDS in monkeys 
(Kolmogorov–Smirnov test; D = 0.201, p = .0227; Fig. 5D), 
and this was accompanied with a moderate but not signifi-
cant decrease in MIRS (Kolmogorov–Smirnov test; D = 
0.183, p = .0482; Fig. 5D). Another post hoc analysis look-
ing at win-stay/lose-switch tendencies of monkeys revealed 
that the observed change in reward-dependent strategy 
mainly resulted from reduced probability of win-stay from 
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SE (M = 0.627, SD = 0.22) to LE blocks (M = 0.564, SD = 
0.196). Lose-switch tendency was overall higher than win-
stay but was largely the same between SE (M = 0.738, SD 
= 0.158) and LE blocks (M = 0.733, SD = 0.156). In other 
words, monkeys adjusted their reward-dependent strategy to 
expected block switches by switching more from the previ-
ously rewarded option.

Finally, to test possible interactions between uncertainty 
and reward expectation, we further divided SE and LE 
blocks according to uncertainty (more or less uncertain) and 
found that the major effect of block switch expectation was 
mediated by uncertainty in the reward probability. We found 
that the differences between SE and LE blocks were mainly 
significant in more uncertain blocks but not in less uncertain 
ones (Fig. S6). This suggests that expectation was more pro-
nounced in more uncertain reward environments because in 
less uncertain environments, reward feedback could signal 
changes in the reward schedule more easily.

To compare behavioral changes to actual and expected 
block switches, we performed further analyses focusing 
on the LE blocks, which allowed us to examine changes 

to expected block switches. These blocks were longer than 
expected (L > E[L]) and therefore had expected block 
switches situated prior to the actual block switches. Accord-
ingly, we computed the changes in the behavioral metrics 
after expected block switches using paired-sample t tests, 
similar to the analyses presented in Fig. 3.

We found that mice reacted to actual and expected block 
switches similarly; both of these switches were accom-
panied with increased H(str), ERDS, and EODS, and 
decreased MIOS (Fig. S7). Among these metrics, EODS 
showed the largest changes as suggested by the effect sizes 
(Fig. S7C; actual block switch: Cohen’s d = −0.209, p = 
6.37×10-14; expected block switch: Cohen’s d = −0.225, 
p = 7.24×10-24). Such significant effects on both EODS 
and MIOS suggest that the observed adjustment in behav-
ior after perceived block switches could be mainly due to 
changes in the option-dependent strategy, as the animals 
anticipate a switch between the better and worse choice 
options. Monkeys also similarly reacted to actual and 
expected block switches with decreased MIRS (Fig. S8E; 
actual block switch: Cohen’s d = 0.322, p = .0131; expected 

Fig. 4  Effects of uncertainty and expectation of block switches on 
choice behavior in mice. A–C Effects of uncertainty on choice behav-
ior. Violin plots show the distributions of performance and entropy-
based metrics computed from different types of trials according to 
uncertainty of the reward schedule. All metrics are computed using 
the last 30 trials in each block. Asterisks show results of two-sample 
Kolmogorov–Smirnov test with a null hypothesis that the two sam-
ples are from the same continuous distribution (two-sided test, cor-
rected for two multiple comparisons). More uncertainty results in 

more inconsistent choice driven by more stochasticity. D–F Effects 
of block switch expectation on choice behavior. SE and LE indicate 
shorter than and longer than expected blocks, respectively, corre-
sponding to trials before and after the animal expected a block switch. 
Violin plots show the distributions of performance and entropy-based 
metrics computed from different types of trials according to block 
length prediction error. Overall, mice adopted less consistent choice 
strategies when blocks were longer than expected, especially in more 
uncertain environments
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block switch: Cohen’s d = 0.346, p = .00896). ERDS 
increased after expected block switches (Fig. S8B, right; 
Cohen’s d = −0.411, p = .00275) more so than after actual 
block switches (Fig. S8B, left; Cohen’s d = −0.183, p = .197).

These results indicate that monkeys adapted to perceived 
block switches mainly through changes in a reward-depend-
ent strategy, contrary to mice which mostly showed changes 
in an option-dependent strategy. Overall, the means of paired 
differences did not significantly differ between actual and 
expected switches for most of the metrics, as determined by 
independent-sample t test even when using the most liberal 
alpha level at 0.05 (insets in Fig. S7, S8). Therefore, the 
above analyses based on behavioral metrics revealed that 
both mice and monkeys showed consistent adjustments to 
expected and actual block switches, but monkeys also exhib-
ited some discrepancies in their adjustments (e.g., MIOS in 
Fig. S8F inset).

An additional analysis suggests that some of the observed 
differences in the adopted strategy by mice and monkeys 
(option-dependent vs. reward-dependent) can be attributed 

to differences in tasks. More specifically, we examined 
whether the difference between ERDS and EODS (ERDS 
− EODS) in a given block of trials depends on the level of 
uncertainty in determining the better option using ΔP (simi-
lar to the top rows of Figs. 4 and 5). We found that for mice, 
(ERDS − EODS) significantly decreased from less uncertain 
to more uncertain environments (M±SD: 0.031 ± 0.108 vs. 
0.016 ± 0.13; two-sided t test, p = .000266; Cohen’s d = 
0.129; Fig. S9A). Similarly, monkeys showed a decrease 
in (ERDS − EODS) between less and more uncertain envi-
ronments but this decrease was not statistically significant 
(M±SD: −0.022 ± 0.144 vs. −0.026 ± 0.139; two-sided t 
test, p = .862; Cohen’s d = 0.0274; Fig. S9B). Overall, these 
results raise the possibility that more difficult reward sched-
ules influence animals to tend toward a more reward-based 
strategy.

Computation of expected block length (E(L)) and result-
ing block length prediction error (BLPE) depend on the 
parameter 𝛾E that controls update of E(L) (see Eq. 7). In all 
of the above analyses related to the effect of block switch 

Fig. 5  Effects of uncertainty and expectation of block switches on 
choice behavior in monkeys. A–C Effects of uncertainty on choice 
behavior. Violin plots show the distributions of performance and 
entropy-based metrics computed from different types of trials accord-
ing to uncertainty of the reward schedule. All metrics are computed 
using the last 20 trials in each block. Asterisks show results of two-
sample Kolmogorov–Smirnov tests with a null hypothesis that the 
two samples are from the same continuous distribution. D–F Effects 

of block switch expectation on choice behavior. SE and LE indicate 
shorter than and longer than expected blocks, respectively, corre-
sponding to trials before and after the animal expected a block switch. 
Violin plots show the distributions of performance and entropy-based 
metrics computed from different types of trials according to block 
length prediction error. Overall, monkeys adopted less consistent 
reward-dependent choice strategies when blocks were longer than 
expected, especially in more uncertain environments
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expectation, we set 𝛾E = 0.1. Nonetheless, we also tested 
whether and how observed differences in entropy-based met-
rics between SE and LE blocks depend on the value of 𝛾E 
(Figs. S10 and S11). Although we found differences for a 
wide range of 𝛾E values, they tended to be more pronounced 
for smaller values of 𝛾E, corresponding to integration of block 
length over longer timescales. This observation is in line with 
the intuition that capturing regularities of the environment 
requires estimation based on multiple block switches.

Finally, we conducted an additional permutation test to 
compare entropy-based metrics across conditions (less vs. 
more uncertain, or SE vs. LE; see Methods for more details). 
This was done to avoid a possible confound due to small sam-
ple size for computation of entropy-based metrics that causes 
bias toward smaller values (though this bias should impact 
all conditions similarly as equal numbers of trials were used 
for different conditions). Overall, results from the permutation 
test were consistent with and in some cases more likely to be 
significant than those based on the Kolmogorov–Smirnov test. 
As for the effect of reward uncertainty in mice (Fig. 4A–C), 
we confirmed the same increase in H(str) (Fig. S12A), ERDS 
(Fig. S12C), and EODS (Fig. S12G), with additional signifi-
cant decrease in MIRS in more uncertain blocks (Fig. S12E). 
The added significant effect of MIRS supports our above inter-
pretation that the observed increase in H(str) is most likely due 
to the changes in the effects of reward feedback on choice strat-
egy. For the effect of uncertainty in monkeys, we found that 
H(str) (Fig. S12B), ERDS (Fig. S12D), EODS (Fig. S12H), 
and MIOS (Fig.  S12J) were all significantly smaller in 
more uncertain environments. The results of the Kolmogo-
rov–Smirnov test were in the same direction but not signifi-
cant (Fig. 5A–C). With regard to the effect of block switch 
expectation, mice had significantly larger EODS (Fig. S13G) 
and smaller MIOS (Fig. S13I) in LE blocks, whereas monkeys 
showed significant reduction in MIRS only (Fig. S13F). These 
results are consistent with the above findings that mice react to 
perceived block switches through changes in option-dependent 
strategy (Fig. S7), whereas monkeys react through changes in 
reward-dependent strategy (Fig. S8).

Reinforcement learning models reveal  
mechanisms underlying observed adjustments

To reveal possible mechanisms by which uncertainty and 
expectation of block switches affect choice behavior and 
learning, we used simple RL models (RL1,  RL1decay, RL2, 
 RL2decay) to fit data in different blocks of the experiments 
as described above (Methods). The first two models had a 
single learning rate (RL1), while the other two had separate 
learning rates for rewarded and unrewarded trials (RL2). We 
also tested how the fit of data can be improved by including 
forgetting in the estimated value for the unchosen option or 
action (captured by a decay rate 𝜸 in  RLdecay models).

We found the winning model for fitting mouse data to be 
 RL1decay that has a single learning rate 𝜶 , an inverse temper-
ature 𝜷 , and a decay rate 𝜸 (Table 1). The normalized AIC by 
number of trials  (AICnorm) for this model was significantly 
lower than that of the second-best model,  RL2decay (paired-
sample t test), t(3767) = 12.67, p = 5.21×10-36; Cohen’s 
d = 0.2063. For the monkey data, the best model was the 
simplest model, RL1, however, the  AICnorm for this model 
was not significantly lower than that of the second-best 
model, RL2 (paired-sample t test), t(250) = 1.41, p = .161; 
Cohen’s d = 0.089. Overall, we found that a single-learning 
rate model provided a better fit to both species than separate-
learning rate models. Mouse data tended to prefer models 
with a decay term. In contrast, monkeys’ choice data were 
better fit with models without decay, suggesting a different 
form of reward probability estimation from mice.

Accordingly, we analyzed the fitted parameters from 
the winning model of each species  (RL2decay and RL1 for 
mice and monkeys, respectively). We hypothesized that 
a smaller learning rate could be advantageous in more 
uncertain environments, because it allows animals to 
obtain a more precise estimate of reward probability in 
such environments (cf. Fig. 1B in Farashahi et al., 2017). 
With regard to the expectation of block switches, we 
hypothesized that when blocks are longer than expected 
(LE), the increased randomness in choice behavior would 
result from an increase in the stochasticity of choice and/
or decrease in learning, as suggested by results in the 
previous section. Higher stochasticity in choice can be 
reflected in the lower inverse temperature 𝜷 . In contrast,
decreased learning could be mediated by decreased learn-
ing rate and/or faster decay rate for the unchosen option, 
both of which could reduce the effects of previous reward 
feedback on choice behavior.

We found that in mice, the learning rate (𝜶 ) was sig-
nificantly reduced from less-uncertain (M = 0.372, SD = 
0.252) to more-uncertain (M = 0.278, SD = 0.249) blocks, 
supporting our hypothesis (Fig. 6A). We also observed a 
significantly smaller decay rate (𝜸decay), corresponding to 
less forgetting of the reward estimate for the unchosen option 
in more uncertain environments (Fig. 6C). Overall, these 
results indicate that more uncertainty resulted in slowing 
down of value updates in mice. In contrast, the effect of 
block switch expectation was mediated mostly by changes 
in the inverse temperature parameter (Fig. 6E). Specifically, 
when blocks were longer than expected (LE), the inverse 
temperature 𝜷 was significantly reduced corresponding to
more stochasticity in choice (Kolmogorov–Smirnov test, D 
= 0.129, p = 4.85×10-14). At the same time, longer than 
expected blocks were accompanied by decreased learning 
rate and increased decay rate (Fig. 6D–E). These opposing 
effects on value updates are interesting as they suggest that 
when expecting block switches, mice slowed down learning 
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from chosen option while speeding up the forgetting of the 
unchosen option.

Furthermore, dividing LE and SE blocks into more or less 
uncertain conditions, we found the same mediating effect 
of uncertainty as revealed by behavioral metrics. That is, 
significant changes in the estimated model parameters due 
to block switch expectation were only observed for more-
uncertain blocks, consistent with the interpretation that 
expectation is more pronounced in more uncertain environ-
ments. More specifically, the reduction in 𝜷 for LE blocks
was significant only for the more uncertain environment 
(blue bars in Fig. 6E inset; Kolmogorov–Smirnov test, D 
= 0.219, p = 6.17×10-8) but not for the less uncertain one 
(gray bars in Fig. 6E inset; Kolmogorov–Smirnov test, D 
= 0.105, p = .437). Similarly, an increase in 𝜸decay for LE 
blocks was only observed for more uncertain blocks (blue 
bars in Fig. 6F inset; Kolmogorov–Smirnov test; D = 0.16, 
p = .00018) but not for less uncertain blocks (gray bars in 
Fig. 6F inset; Kolmogorov–Smirnov test, D = 0.10, p = 
.503). Interestingly, the learning rate did not show this pat-
tern as there was no significant decrease for LE blocks in less 
uncertain (gray bars in Fig. 6D inset; Kolmogorov–Smirnov 
test, D = 0.191, p = .0152) or more uncertain environments 
(blue bars in Fig. 6D inset; Kolmogorov–Smirnov test, D = 
0.118, p = .0151). This suggests a modulatory effect of local 
uncertainty about the better option on uncertainty about the 

expectation of block switches (which could take longer to 
estimate) via changes in stochasticity in choice and the decay 
of value estimates for the unchosen option.

In monkeys, we found evidence that greater uncertainty 
about the better option resulted in significant changes in 
the estimated model parameters. More specifically, mean 
learning rate was reduced from less (M = 0.443, SD = 
0.35) to more uncertain (M = 0.381, SD = 0.33) environ-
ments, similar to what we found in mice (Fig. 7A; Kol-
mogorov–Smirnov test, D = 0.166, p = .273). In contrast 
to mice, however, the effect of block switch expectation was 
reflected in a significant decrease in the learning rate only 
(Fig. 7C; Kolmogorov–Smirnov test, D = 0.193, p = .0204). 
This suggests thatmonkeys slowed down learning, perhaps 
because around block switches reward feedback was not 
reliable. Similar to mice, the effects on the learning were 
more pronounced in less uncertain environments (gray bars 
in Fig. 7C inset; Kolmogorov–Smirnov test, D = 0.323, p 
= .0657) compared with more uncertain ones (blue bars in 
Fig. 7C inset; Kolmogorov–Smirnov test, D = 0.275, p = 
.123), although not statistically significant. Inverse tempera-
ture was not affected by expectation of block length (Fig. 7D; 
Kolmogorov–Smirnov test, D = 0.072, p = .908). Overall, 
these results demonstrate that mice and monkeys respond to 
regularities and uncertainty in the reward environment via 
different mechanisms.

Table 1  Reinforcement learning models used to fit choice data, their parameters, and their goodness-of-fit

Reported are parameters of a given model and goodness-of-fit, given by negative log-likelihood (−LL) and AIC normalized by the number of 
trials in each block  (AICnorm). Values reported in parentheses next to  AICnorm are the difference in  AICnorm of a given model and the full model 
 (RL2decay). Asterisks indicate the significance of this difference indicated by paired-sample t test (p < 0.05/6, multiple comparison corrected). 
d(full) indicates Cohen’s d value from paired-sample t tests between a given model and the full model  (RL2decay), with the asterisk indicating 
significance. d(best) indicates Cohen’s d value of paired-sample t tests between a given model and the best model determined by the lowest 
 AICnorm. Akaike w. = Akaike weights, indicating the probability that a given model is the best model. Integers in parentheses are ranks of a 
given model. Insets show histograms of  AICnorm from the mouse (top row, red) and monkey data (bottom, teal)
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Discussion

How the brain learns from regularities in the environment 
and adapts to an uncertainty associated with those regu-
larities are central questions in cognitive and behavioral 
neuroscience. Here, we used multiple metrics based on 
information theory to investigate the effects of differ-
ent types of uncertainty on learning and choice behav-
ior. We found that rodents and primates differed in how 
they adapted to uncertainty in the environment. Mice 
employed option-dependent strategies more often, after 
slowly identifying the better option, and chose to stay 
on the better rewarding option to exploit their current 
estimates of reward probabilities. In contrast, monkeys 
employed reward-dependent strategies more often while 
switching between choice options more frequently. Fit 
of choice data using RL models showed that this differ-
ence in strategy was mediated via higher learning rates 
in monkeys, consistent with the interpretation that such 
strategy requires stronger weighting of immediate reward 

outcomes. In addition, the inverse temperature represent-
ing choice consistency was higher in mice, as they con-
sistently stayed on the better option more than monkeys.

Some of the similarities and differences between mice 
and monkeys can be explained as below. First, mice exhib-
ited an overall more consistent choice strategy, indicated 
by the lower values of H(str), ERDS, and EODS than those 
of monkeys. The higher performance (P(Better)) in mice 
suggests that the lower entropy was mainly due to these 
animals staying on the better option more consistently than 
monkeys. We note that this difference could be in part 
derived from slight differences in tasks rather than reflect-
ing some intrinsic intra-species differences. In the mouse 
experiment, the same reward schedule was used through-
out each of the entire session, while the reward proba-
bilities reversed between two sides at every block switch 
(Fig. 2C). In contrast, in the monkey task, reward sched-
ules were randomly assigned at every block, making it 
more challenging to determine the better option (Fig. 2D). 
Furthermore, mice on average experienced more than 

Fig. 6  Mechanisms underlying effects of uncertainty and expecta-
tion of block switches revealed by fitting of mouse data by reinforce-
ment learning models. Plots show distributions of fitted parameters 
from  RL1decay model to mice choice data, categorized by the level of 
uncertainty (A–C) or expectation of block length (D–F). 𝜶 = learn-
ing rate for rewarded and unrewarded trials; 𝜷 = inverse tempera-
ture or choice consistency; 𝜸decay = decay rate in value estimate for 
the unchosen option. SE = shorter than expected, LE = longer than 
expected blocks. Asterisks show results from a two-sample Kol-
mogorov–Smirnov test. All tests are two-sided, corrected for multi-

ple comparisons of three (number of free parameters). Box plots in 
the insets show further division of the data into less (gray) or more 
(blue) uncertain blocks. Asterisks are results of two-sample Kol-
mogorov–Smirnov tests, corrected for multiple comparisons of six. 
Interaction effect also exists for the significant RL parameters. Over-
all, mice responded to the more uncertain reward environment by 
decreasing the learning rate and slower decay rate for unchosen value. 
In addition, they responded to trials after an expected block switch 
by decreasing learning rate, increasing in stochasticity in choice, and 
having faster decay of unchosen value. (Color figure online)
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twice the number of block reversals than that of monkeys 
during each session of the experiment (Methods). These 
two characteristics of the mouse experiment (use of only 
two reward probabilities in each session and more frequent 
block switches within a session) could facilitate the dis-
tinction between the better and worse options, resulting 
in more adoption of an option-based strategy. In addition, 
reward delivery in the mouse experiment was from two 
separate (left and right) ports instead of the one spout used 
in the monkey experiment. All of these differences could 
make it easier for mice to adopt an option-based strategy.

Furthermore, the difference in the reward rates between 
two options (ΔP) was smaller in the monkey experiment, 
suggesting that the task difficulty was greater for monkeys. 
Interestingly, we found some evidence that within each spe-
cies, increased task difficulty in terms of reward probability 
was accompanied by the animals adopting a more reward-
based strategy (Fig. S9). Therefore, higher task difficulty in 
the monkey experiment could promote a reward-based strat-
egy and lead to a more switching behavior. Specifically, the 
monkeys showed a short-term tendency to switch between 
options and a longer-term tendency to repeat choices for the 

same options—a pattern that can be revealed by inclusion 
of a choice-history variable in a logistic regression on the 
monkeys’ choices (Grabenhorst et al., 2019) and that has 
previously been observed in monkeys performing match-
ing tasks (Lau & Glimcher, 2005). The monkeys’ higher 
tendency to switch may have also resulted from the absence 
of a “changeover delay,” a manipulation sometimes used to 
encourage matching behavior, whereby reward would only 
be delivered on the second trial following a switch between 
options (Sugrue et al., 2004). Interestingly, H(str) was posi-
tively correlated with performance P(Better), indicating that 
a more equal mix of stay and switch facilitated winning of 
rewards in monkeys. In contrast, H(str) was negatively corre-
lated with performance in mice, as they primarily employed 
a staying strategy to exploit the better rewarding option. 
Future empirical work should test the influence of task con-
ditions on these observed species differences.

The overall difference between mice’s and monkeys’ 
adoption of stay vs. switch strategies could also explain how 
they adjusted to uncertainty. More specifically, the greater 
uncertainty in the reward environment (measured by ∆P) 
had different effects on mice and monkeys. Mice adjusted 

Fig. 7  Mechanisms underlying effects of expectation of block 
switches revealed by fitting of monkey data by reinforcement learning 
models. Plots show distributions of fitted parameters from RL models 
to mice choice data, categorized by the effect of expected uncertainty 
(A–B) or expectation of block length (C–D). 𝜶 = learning rate for
rewarded and unrewarded trials; 𝜷 = inverse temperature or choice
consistency. SE = shorter than expected, LE = longer than expected 
blocks. Asterisks show results from a two-sample Kolmogorov–
Smirnov test. All tests are two-sided, corrected for multiple compari-

sons of two (number of free parameters). A–B No parameters were 
significantly affected by expected uncertainty of the reward environ-
ment, similar to the entropy measures. C–D Monkeys responded to 
trials after an expected block switch by decreasing learning rate. Box 
plots in the insets show further division of the data into less (gray) 
or more (blue) uncertain blocks. Asterisks are results of two-sample 
Kolmogorov–Smirnov tests, corrected for multiple comparisons of 
four. Interaction effect was not observed for the significant RL param-
eters. (Color figure online)
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their strategies by incorporating switching strategies more 
often, which resulted in increased randomness in strategies 
reflected by higher entropies (H(str), ERDS, and EODS). 
Monkeys similarly increased their switching behavior, but 
even more so than their baseline strategy (which was already 
very random) such that the overall H(str) was reduced, sign-
aling higher consistency.

The difference in the baseline entropy of strategy (H(str)) 
between mice and monkeys also partly accounts for the 
observed difference in their adjustment to expected block 
switches. The exploitation strategy characterizing the 
mice behavior—consistently staying on the more reward-
ing option—is a form of option-dependent strategy which 
requires a clear sense or confidence about what the better 
option is. Therefore, in the anticipation or perception of 
block switches, the link between previous choice option 
and the subsequent action would be expected to decline as 
the animal begins to explore the alternative option. This 
is what the MIOS metric in mice revealed (comparison of 
before/after metrics in Fig. S7 or Fig. S12I). In contrast, 
monkeys primarily depended on reward-dependent strate-
gies. Accordingly, in the event of expected block switches, 
the link between reward feedback and the subsequent 
action was most significantly reduced (MIRS in Fig. S7E 
and Fig. S12F), as winning a reward did not lead to staying 
behavior as consistently as before.

Here, we used the difference between the baseline prob-
ability of reward for the better and worse options to quantify 
expected uncertainty in the environment. This was based on 
the notion that a larger difference in reward probabilities is 
associated with less uncertainty in identifying the better option 
using reward feedback. Alternatively, one could use the vari-
ance in objective or subjective reward probability to measure 
risk in an economic sense, as such “variance risk” can drive 
choice behavior and neural activity differently than subjective 
value (Grabenhorst, et al., 2019; Schultz et al., 2008). In this 
study, we used uncertainty because in both tasks, reward prob-
abilities are unknown and must be learned from reward feed-
back (De Groot & Thurik, 2018; Soltani & Izquierdo, 2019) 
as opposed to their distributions being fully accessible to the 
subject (Farashahi et al., 2018; Woo et al., 2022). We examined 
how such uncertainty influences choice behavior and learning.

Comparing the effects of reward uncertainty (∆P) and 
block switch expectation, we found that the effects of block 
switch expectation were more subtle compared with that of 
∆P. That is, for all of our analyses comparing the extent of 
these two effects (Fig. 4, 5; Fig. S11, S12), reward uncer-
tainty had a greater impact on behavior than block switch 
expectation for both species. This is expected because antici-
pation of block switches requires longer-term statistics of 
reward outcomes compared with those related to determin-
ing the better option, as shown in a recent study (Atilgan 
et al., 2022). The animals could, for example, return to their 

previous strategy after enough reward feedback has sig-
naled that actual block switch has not occurred yet. Still, 
the entropy-based measures captured such effects from 
LE blocks, by applying the assumption that expectation of 
block switches can have more clear effects toward the end of 
blocks. This also demonstrates the utility of the entropy met-
rics, which are capable of detecting nuanced shifts in choice 
behavior if measured from an appropriate binning of trials.

Finally, the observation that expectation of block switches 
depends on the level of uncertainty suggests interdepend-
ence between different types of uncertainty (Piray & Daw, 
2021; Soltani & Izquierdo, 2019). In a recent study, Piray 
and Daw (2021) provided a normative account that uncer-
tainty (stochasticity) reduces the learning rate, whereas 
volatility increases it. Regarding uncertainty, we similarly 
observed lower mean learning rates for more uncertain 
conditions. However, on the influence of volatility, previ-
ous studies have shown mixed results (Behrens et al., 2007; 
Donahue & Lee, 2015; Farashahi et al., 2019). Consistent 
with previous work (Donahue & Lee, 2015; Farashahi et al., 
2019), we found decreased rather than increased learning 
rates in both species. Moreover, we found that the learning 
rates were not influenced by the mediating effects of greater 
uncertainty on the block switch expectation.

These results raise a possibility that, while learning 
rates could be implicated in adjustment to volatile environ-
ments, the effect of expectation arising from observation 
of long-term regularities in the environment might more 
directly involve other cognitive mechanisms. For example, 
it has been suggested that active representations of alter-
native models about the environment (task set) are stored 
in long-term memory to be retrieved when the correspond-
ing context reoccurs (Collins & Koechlin, 2012; Soltani & 
Koechlin, 2022). The neural system for this retrieval likely 
involves extensive interaction between the prefrontal cor-
tex and the hippocampus, the latter proposed to be involved 
in the representation of unexpected uncertainty (Payzan-
LeNestour et al., 2013) and one-shot learning (Lee et al., 
2015) in humans. Further studies in rodents and primates 
could directly probe the causal role for the hippocampus in 
learning under different forms of uncertainty.

There are limitations and additional considerations related 
to our findings. Foraging in the wild consists of exposure to 
time-delays and spatial separation between options, so more 
naturalistic dynamic foraging tasks could be developed to 
increase parametric space such that a wider range of val-
ues could be explored (Constantino & Daw, 2015; Hall-
McMaster et al., 2021). Indeed, the longer time horizon and 
expansive range size to forage in nonhuman primates com-
pared with rodents influence how the species predict, evalu-
ate, and act on rewards; mediated by a more specialized and 
expansive prefrontal cortex in the primate brain (Rudebeck 
& Izquierdo, 2022; Wittmann et al., 2016). Additionally, 
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though we found that stochastic behavior and correspond-
ing entropy metrics were affected by uncertainty of the bet-
ter option in both mice and monkeys, these effects may be 
mediated by different neural mechanisms given that mice 
responded by actions, whereas monkeys responded to stimuli. 
Previous work has shown that (freely moving) rodents tend 
to have greater difficulty learning stimulus-based probabilis-
tic outcomes compared with spatial-based ones (Chen et al., 
2021; Harris et al., 2021), whereas monkeys do well in both 
modalities (Costa et al., 2016; Rothenhoefer et al., 2017; 
Taswell et al., 2021). Consistently, different neurons in the 
dorsolateral prefrontal cortex of monkeys have been shown 
to track reward uncertainty associated with both stimuli and 
actions (Grabenhorst et al., 2019). This points to a need to 
disambiguate the rodents' natural tendency to navigate and 
learn spatially, versus the influence of task conditions that 
enhance stable choice such as in this dynamic foraging task.

Conclusion

Together, our results illustrate how higher-order statistics of 
the environment influence learning and choice strategies. We 
show that  behavioral metrics based on information theory 
can be useful for investigating multiple aspects of adaptive 
behavior under different forms of uncertainty. By intro-
ducing the notion of block switch expectation, we showed 
that shorter than expected blocks and longer than expected 
blocks were marked by quantitatively different consisten-
cies in behavior as captured by entropy-based metrics. These 
findings suggest that mice and monkeys can use reward his-
tory to form long-term expectations about the environment 
and adjust their behavior accordingly. Such expectations of 
block switches were characterized by increased randomness 
in choice strategy, similar in its quantity to those induced by 
the actual block switches. Therefore, our study demonstrates 
how model-free (metrics based on information theory) and 
model-dependent (RL models) methods can complement 
each other to elucidate behavioral adjustments and underly-
ing mechanisms with finer details.
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