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Locus coeruleus-norepinephrine: basic functions and 
insights into Parkinson’s disease

Introduction
The locus coeruleus (LC) is a norepinephrine-producing 
nucleus found in the dorsal pons of most vertebrates. The 
LC was first described in the late 1700s by Félix Vicq d’Azyr 
(Tubbs et al., 2011) although sources frequently credit Jo-
hann Christian Reil (Reil and Meckel, 1809). Contemporary 
interest in the LC began with anatomical work by Fumio 
Sano and Glenn Russel, who independently concluded that 
the LC is a distinct nucleus with similar - though not iden-
tical - appearance across species (Maeda, 2000). Like other 
neuromodulatory structures, the LC contains an exceedingly 
small number of cells, yet projects to much of the brain. The 
human LC is estimated to contain approximately 30,000 neu-
rons that provide norepinephrine to a substantial fraction of 
the brain’s 100 billion neurons (Mouton et al., 1994). The LC 
is therefore anatomically poised to modulate a wide range of 
functions, including homeostasis, sensory processing, motor 
behavior, and cognition. This review aims to summarize the 
basic physiology of the LC-norepinephrine system, its func-
tion in normal behavior, and its associated neural pathways. 
We then use this foundation to gain insight into pathophys-
iology, with an emphasis on Parkinson’s disease (PD).  PD is 
a long-term neurodegenerative disease with both motor and 
neuropsychiatric symptoms (Rommelfanger and Weinshen-
ker, 2017). PD is traditionally thought to be a disorder of the 
midbrain dopamine system, since it manifests with substan-
tial dopaminergic neuron loss and is treated with L-DOPA 

administration, a dopamine precursor. In this review, we 
augment this perspective by highlighting recent work that 
emphasizes the contributions of norepinephrine dysfunction 
to pathogenesis.

We searched PubMed and Google Scholar using the 
keywords ‘locus coeruleus’ and ‘norepinephrine’ for ba-
sic science references and added ‘Parkinson’s disease’ for 
disease-specific references. We focused mainly on articles 
published between 2010 and 2019. We included older, sem-
inal references when they were relevant to the scope of this 
review. 

Basic Physiology
Seminal studies of LC physiology developed the idea that the 
system is a crucial node in arousal or attention. This key hy-
pothesis has continued to shape the design and interpretation 
of modern experiments (Carter et al., 2010; Lovett-Barron 
et al., 2017). One of the first systematic studies to employ 
single-unit recordings in awake animals - rats and squirrel 
monkeys - found that LC neurons homogeneously increase 
stimulus-evoked firing in response to salient auditory, visual, 
and touch stimuli (Foote et al., 1980). This was an important 
finding, as previous studies in anesthetized animals found 
that only noxious stimuli could elicit robust increases in fir-
ing, which led to hypotheses that the system was primarily 
concerned with fear or nociception. It was also discovered 
that LC exhibit lower spontaneous firing during sleep, further 
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cementing its role in arousal (Aston-Jones and Bloom, 1981). 
Well-controlled behavioral experiments added to this 

view and began to paint a more nuanced picture. In ma-
caques trained to respond to an oddball visual stimulus, 
target stimuli were found to drive robust phasic firing while 
non-target stimuli elicited no changes (Rajkowski et al., 
1994). The phasic response scales with the expected value 
of the stimulus (Bouret and Richmond, 2015) and the ef-
fort required to produce the action (Varazzani et al., 2015). 
Further analyses revealed that this phasic response is better 
aligned to the action than the stimulus (Aston-Jones and 
Cohen, 2005; Bouret and Richmond, 2015). LC responses 
do not always precede overt motor behavior, as behavioral 
tasks designed to separate stimuli from actions have found 
phasic responses to both (Kalwani et al., 2014), and simi-
lar spontaneous movements (i.e., not in response to a cue) 
do not elicit changes in firing. Altogether, these findings 
have lent evidence to the hypothesis that LC is necessary to 
promote arousal or mobilize effort (Sara and Bouret, 2012; 
Varazzani et al., 2015; Xiang et al., 2019). However, one in-
triguing study trained monkeys to perform a countermand-
ing saccade task and found that - although LC responds 
to go cues and to saccades - it does not respond when 
saccades are appropriately cancelled (Kalwani et al., 2014). 
Although the full implications of this finding have yet to be 
thoroughly understood, it challenges the most straightfor-
ward interpretation of the arousal/effort hypotheses, since 
inhibiting a planned saccade is an effortful and demanding 
action.

LC responds vigorously to novel stimuli. However, if the 
stimuli are not behaviorally relevant, the response decays 
rapidly. Activity reappears during reversal learning or ex-
tinction (Sara and Segal, 1991), and after reversal, the LC 
response to stimuli can be expressed before behavioral ex-
pression of reversal (Aston-Jones et al., 1997). Additionally, 
LC neurons are sensitive to changes in task states in mon-
keys performing a decision-making task (Jahn et al., 2019). 
These studies lent evidence to the idea that LC is important 
for learning new behavioral contingencies.

The LC is now appreciated to have at least two modes of 
firing, with consequences for behavioral performance: a 
background tonic mode, and a short-timescale phasic mode 
(Varazzani et al., 2015). The first hints of a relationship be-
tween LC and behavioral performance came from primate 
studies which found that low tonic activity is correlated with 
task disengagement and drowsiness. Elevated tonic/low 
phasic firing is also correlated with task disengagement, al-
though monkeys are distractible in this regime (Varazzani et 
al., 2015). A sweet spot in the middle, with low tonic activity 
and high phasic activity, is related to good task engagement. 
These modes of firing elicit different release profiles of nor-
epinephrine and distinct modulation of downstream circuits 
(McBurney-Lin et al., 2019). 

Role in Learning and Memory
Manipulation of the LC-norepinephrine system has pro-
found consequences for cognitive behavior. Lesion studies 

have reported gross deficits in learning, with LC-ablated 
animals taking much longer to learn to run down a runway 
for food reward (Anlezark et al., 1973). This was likely not 
due to gross motivation deficits, as control and lesioned an-
imals had similar body weights and exploratory behavior in 
an open field. Vicarious trial-and-error, an index of learning, 
is disrupted with target-specific pharmacological manipula-
tion of norepinephrine (Amemiya et al., 2016). LC-norepi-
nephrine manipulation affects distinct phases of memory 
processing, depending on task conditions and details of ma-
nipulation (Khakpour-Taleghani et al., 2009). Other studies 
have pointed to a more nuanced role in learning when task 
contingencies change. Recent optogenetic manipulation ex-
periments have argued that disparate effects on learning may 
be a consequence of projection-target specificity and down-
stream computations (Uematsu et al., 2017). 

Unified Accounts of  Locus Coeruleus 
Function
One of the earliest general theories of LC hypothesized that 
norepinephrine release from LC facilitates learning asso-
ciations between stimuli and outcomes (Kety, 1970). This 
theory has received support over the years, but the exact 
role of LC with learning is nuanced and remains to be fully 
explored. Modern theories of LC function have taken into 
account numerous findings since Kety’s hypothesis was for-
mulated. One theory holds that LC encodes for unexpected 
uncertainty - that is, when the world changes in an unpre-
dictable manner (Dayan and Yu, 2006). The functional effect 
is to influence inference and mediate changes in synaptic 
plasticity to allow for rapid learning. This theory has re-
ceived support from human pupillometry studies (Nassar et 
al., 2012). Another similar theory, the adaptive-gain hypoth-
esis, argues for an inverted-U relationship between tonic LC 
activity and behavioral performance (Varazzani et al., 2015). 
Low and high tonic LC are associated with task disengage-
ment, with high tonic LC favoring distractibility and explor-
atory behavior. When tonic LC is in between these extremes, 
then task engagement is high. The function of these LC pat-
terns is to optimize reward/utility, which is hypothesized to 
be under the control of prefrontal value circuitry. The adap-
tive-gain hypothesis has likewise received support from hu-
man pupillometry studies (Gilzenrat et al., 2010; Jepma and 
Nieuwenhuis, 2011). Another similar account holds that LC 
signals higher-order prediction errors to enable fast-times-
cale behavioral change (Sales et al., 2019). Finally, since the 
effects of LC manipulation are occasionally specific to ex-
tinction learning, we propose that LC is involved in the gen-
eration of latent states (Gershman et al., 2017). This theory 
predicts that during extinction learning (after a cue has been 
associated with an outcome), the brain does not degrade the 
original memory but rather associates the extinction mem-
ory with a new latent state. The original cue-outcome mem-
ory remains in the brain, largely unaffected. If LC is over- or 
underactive, the brain may create too many or too few latent 
states. Dysfunction of the LC-norepinephrine system may 
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therefore result in cognitive deficits, particularly in learning, 
memory, and decision making.

Synaptic Plasticity Mechanisms of 
Noradrenergic Signaling
The role of LC in learning, memory, and behavioral flexi-
bility has stimulated interest in noradrenaline’s mechanism 
of action. Synaptic plasticity mechanisms are particularly 
well-suited to re-adapt neural circuitry to process new senso-
ry inputs and task contingencies to produce desired actions. 
Initial work from Bear and Singer (1986) demonstrated that 
synergy of both adrenergic and cholinergic neurotransmis-
sion is required for experience-dependent plasticity in the 
primary visual cortex. Later studies showed that norepi-
nephrine has independent effects on plasticity throughout 
the brain including visual cortex (van den Pol et al., 2002; 
Huang et al., 2013), frontal cortex (Lim et al., 2010), primary 
auditory cortex (Martins and Froemke, 2015), hippocampus 
(Takeuchi et al., 2016) and amygdala (Johansen et al., 2014). 
In mice, chemogenetic stimulation of LC induces rapid in-
creases in brain-wide functional connectivity in regions in-
volved in salience processing (Zerbi et al., 2019). Important-
ly, these findings appear to translate to the human brain, as 
fMRI studies have shown changes in brain-wide connectivity 
with increased catecholamine concentration (van den Brink 
et al., 2016). 

Noradrenergic signaling can produce both synaptic weak-
ening as well strengthening. This is, in part, due to hetero-
geneity of downstream receptors. Norepinephrine can have 
an excitatory effect on its target neurons through α1 (Gq-cou-
pled) and β (Gs-coupled) adrenergic receptors and inhibitory 
effects through α2 (Gi-coupled) adrenergic receptors (Mc-
Burney-Lin et al., 2019). An interesting theory suggests that, 
given the same history of synaptic activity, a synapse can be 
primed for either potentiation or depression depending on 
the G-coupled receptor activated by neuromodulators (van 
den Pol et al., 2002). This bidirectional plasticity has been 
shown in visual cortex (Seol et al., 2007; Huang et al., 2013; 
He et al., 2015) and could be the answer for rapid modula-
tion of synaptic connectivity by neuromodulators. Further, 
He et al. (2015) suggested particular neuromodulators can 
prime synapses for a specific polarity of plasticity. Nor-
epinephrine dependent regulation of the AMPA receptor 
population could allow for widespread plasticity through 
the cerebral cortex (Hu et al., 2007). At a circuit level, the 
ability of norepinephrine to differentially regulate inhibitory 
cells (through α2 receptors) and excitatory cells (through 
α1 and β receptors), as observed in the basal forebrain and 
cortex, could produce a change in excitatory/inhibitory drive 
onto their downstream targets. This would trigger plasticity 
mechanisms in target neurons in order to maintain excitato-
ry/inhibitory balance (McBurney-Lin et al., 2019). 

Afferent Pathways of the  Locus Coeruleus
The myriad of LC functions can be explained, in part, by its 
functional connectivity. Modern studies have exploited the 

specificity of viral transgenic tools to label the LC afferent 
population and revealed that LC receives inputs from a re-
markably diverse number of regions (Schwarz et al., 2015; 
Uematsu et al., 2017). Almost all areas of the neocortex 
project to the LC (Schwarz et al., 2015), with strong gluta-
matergic projections from the prefrontal cortex (Jodo and 
Aston-Jones, 1997) and corticotropin-releasing factor pro-
jections from the amygdala (Szabadi, 2013). Sleep-promot-
ing GABAergic neurons in ventrolateral preoptic nucleus, 
a region of the hypothalamus, inhibit LC during slow wave 
sleep (Szymusiak and McGinty, 2008) and orexinergic neu-
rons in lateral hypothalamus/perifornical area send strong 
excitation to LC to promote wakefulness (Szabadi, 2013). 
LC neurons also receive excitatory input from dopaminergic 
neurons in the ventral tegmental area. Because infusion of 
dopamine into LC inhibits sleep (Crochet and Sakai, 2003), 
this pathway is thought to be part of the wakefulness pro-
moting pathway. Given the important role of the midbrain 
dopamine system in motivated behavior, this pathway may 
also be critical for LC’s function in reward-based learning. 
Other reviews provide detailed information regarding fur-
ther important input pathways (Szabadi, 2013; Schwarz and 
Luo, 2015).

Efferent Pathways of the Locus Coeruleus
Since individual LC neurons have little molecular and mor-
phological diversity (compared to neuromodulators like the 
dorsal raphe serotonergic system), the diverse nature of LC 
function may be explained by projection profiles of neuronal 
subsets (Seo and Bruchas, 2017). The classical view holds 
that LC broadly and nonspecifically modulates neuronal 
function throughout the brain via volumetric transmission. 
However, these findings were mostly inferred from experi-
ments using non-specific labeling techniques. This view has 
been recently challenged with the development of molecular 
labeling techniques. There is evidence for some modular-
ity, but there is extensive collateralization of many output 
pathways (Schwarz and Luo, 2015; Kebschull et al., 2016). 
Overall, there are at least three major efferent pathways orig-
inating from LC (Figure 1): 1) ascending pathway projec-
tions to the cortex, 2) cerebellar pathway and 3) descending 
pathway projections to the spinal cord (Szabadi, 2013). The 
ascending pathway is mostly involved in arousal, behavioral 
flexibility, and brain state mediation. The descending path-
way is thought to control lower-level motor actions. The 
cerebellar pathway is remarkably understudied and a distinct 
function is unclear. However, the cerebellar cortex has ro-
bust expression of noradrenergic receptors and disruption of 
this signaling impairs motor function. We intentionally limit 
the scope of this review but other references provide more 
details (Szabadi, 2013; Schwarz et al., 2015). We will focus on 
the ascending and descending pathways.  

Ascending pathway
The ascending pathway is made up of projections to the lim-
bic system, midbrain, thalamus, basal forebrain and all of the 
neocortex (Figure 1). This pathway is thought to be involved 
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in behavioral flexibility, cognitive control, wakefulness, for-
mation and retrieval of episodic and emotional memories, 
modulation of pain, response to stress, cardiovascular regu-
lation, nociception, pupillary light reflex, and some sympa-
thetic and parasympathetic functions. 

The neocortex and basal forebrain are heavily innervat-
ed by LC (Szabadi, 2013; Schwarz and Luo, 2015; McBur-
ney-Lin et al., 2019). Expression of excitatory noradrenergic 
receptors (α1 and β) on excitatory neurons and inhibitory 
receptors (α2) on GABAergic neurons allows LC to exert 
excitatory influence on these areas (Szabadi, 2013; Schwarz 
and Luo, 2015), which would prime LC to modulate cortical 
arousal and cognition.

LC extensively projects to the thalamus, primarily to excit-
atory neurons expressing the excitatory α1 receptor (Szabadi, 
2013). Through the thalamus, LC affects sensory processing, 
wakefulness, stress detection and pain modulation (Szabadi, 
2013; Beas et al., 2018; Rodenkirch et al., 2019). Outside of 
the thalamus, LC has bidirectional connectivity with the 
hypothalamus; this circuitry is part of sleep-wake circuitry 
through ventrolateral preoptic area and lateral hypothalam-
ic/perifornical areas, stress response through the paraven-
tricular nucleus, and neuroendocrine functions through the 
arcuate nucleus (Szabadi, 2013; Schwarz and Luo, 2015). In 
the midbrain, dopaminergic neurons in the ventral tegmen-
tal area and substantia nigra receive noradrenergic innerva-
tion from LC (as well as other brainstem adrenergic regions) 
(Rommelfanger and Weinshenker, 2007; Mejias-Aponte, 
2016). This particular pathway highlights the fact that neu-
romodulators influence each other, suggesting a need to 
understand their combinatorial functions, so we may better 
understand physiology and pathophysiology. 

The role of LC in learning and memory is thought to de-
pend in part on the amygdala and hippocampus. The amyg-
dala, known to mediate fear and anxiety responses (Sah, 
2017), contains all major noradrenergic receptors; these have 
been implicated in formation and retrieval of emotional 

memories (Szabadi, 2013; Uematsu et al., 2017). LC is the ex-
clusive source of noradrenaline in the hippocampus and, like 
the amygdala, all major adrenoreceptors have been reported 
(Szabadi, 2013). The LC-hippocampus pathway is critical 
for the formation, consolidation and retrieval of memories 
(Sara and Devauges, 1988; Takeuchi et al., 2016). Recent 
studies have revealed a special case for LC neurotransmis-
sion. Dopamine, a precursor of norepinephrine, is released 
from LC terminals in the dorsal hippocampus to support the 
formation of novelty-based memory (Kempadoo et al., 2016; 
Takeuchi et al., 2016; Wagatsuma et al., 2018). 

Projections from LC to the brainstem are thought to be 
critical for parasympathetic and sympathetic functions (Sz-
abadi, 2013). 

Descending pathway
The coeruleo-spinal pathway is formed by widespread proj-
ects from dorsal and caudal LC neurons to the spinal cord, 
with some collateralization in the brainstem (Figure 1). 
The targets are sensory neurons in the dorsal horn, motor 
neurons in the ventral horn and preganglionic neurons in 
intermediolateral nuclei (Szabadi, 2013). LC norepinephrine 
largely inhibits sensory neurons in the dorsal horn, as these 
cells express inhibitory α2 receptors. One primary function 
is pain desensitization, as activation of this receptor subtype 
provides analgesia/hyperalgesia. The net effect of norepi-
nephrine in the ventral horn is excitation, due to expression 
of α1 receptors. This is consistent with the finding that LC 
activity is low during REM sleep, since muscle tone is lost 
(Szabadi, 2013; Sara, 2017).

Locus Coeruleus  Dysfunction in Parkinson’s 
Disease – Motor and Neuropsychiatric 
Symptoms
Given LC’s role in a number of basic functions, one may 
expect that dysfunction should similarly lead to a wide 

Figure 1 Locus coeruleus (LC) efferent 
pathways and relevant functions.
LC projects throughout the brain in three major 
pathways with widespread collateralization. The 
ascending pathway consists of the ventral teg-
mental area (VTA) and substantia nigra (SN), 
amygdala (Amy), hippocampus (Hipp), hypo-
thalamus (Hyp), thalamus (Th), basal forebrain 
(BF), prefrontal cortex and sensory cortices. The 
cerebellar pathway and descending pathway to 
the spinal cord are involved in motor functions. 
Dysfunction in these pathways may lead to PD 
symptoms. Note: The size of each area is not to 
scale. 
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range of symptoms. Indeed, significant neuronal loss in LC 
is associated with neurodegenerative disorders, such as PD 
and Alzheimer’s disease (German et al., 1992; Hoogendijk et 
al., 1995; Marien et al., 2004), as well as psychiatric diseases 
such as depression (Ordway and Klimek, 2001). In order to 
link the basic findings of LC function with disease, we will 
specifically focus on PD, a disorder with both motor and 
psychiatric symptoms (Gold and Chrousos, 2002; Marien 
et al., 2004). Although the literature lacks clear mechanistic 
explanations, we attempt to link symptoms of PD with LC 
dysfunction and highlight plausible mechanistic links.

PD is primarily thought to be a disease of dopaminergic 
cell loss in the substantia nigra. However, recent evidence 
has pointed to LC norepinephrine as a critical component of 
this disease (Rommelfanger and Weinshenker, 2007). In PD, 
LC cell loss occurs throughout the nucleus and extends into 
the peri-LC subcoeruleus region. The remaining neurons 
exhibit significant shrinkage and have an altered phenotype 
(Hoogendijk et al., 1995). In animal models of this disease, 
noradrenergic signaling from LC provides protection from 
dopaminergic cell loss in the substantia nigra (Srinivasan 
and Schmidt, 2003; Marien et al., 2004). One study con-
firmed dopaminergic cell death in the substantia nigra of PD 
patients and observed dramatic cell loss in the LC (Zarow et 
al., 2003). Furthermore, in a mouse model of PD (mutation 
of the PARK2 gene), there is cell loss from the LC while the 
nigrostriatal system is unaffected (Von Coelln et al., 2004). 
LC’s projections to motor cortices and the spinal cord could 
provide crucial insight for understanding wide-ranging 
symptoms in PD.

Neuropsychiatric Symptoms in Parkinson’s 
Disease
LC is associated with early non-motor symptoms of PD 
such as depression (Remy et al., 2005) and anxiety (Rahman 
et al., 2009; McCall et al., 2015; Zhu et al., 2017). A useful 
biomarker for neurodegeneration in PD is neuromelanin 
– a byproduct of dopamine and norepinephrine synthesis 
- which can be accessed through MRI. Neuromelanin is de-
creased in both the substantia nigra and LC of PD patients 
and LC neuron loss is exaggerated in patients with depres-
sive symptoms (Wang et al., 2018). One link between LC and 
depression is the observation that stressful episodes can po-
tentiate depressive symptoms. This is possibly due to inter-
actions between the stress-induced corticotropin-releasing 
hormone system and LC (Gold and Chrousos, 2002; Gold 
et al., 2015), as corticotropin-releasing factor (potentially 
released from the amygdala (Reyes et al., 2008) is increased 
in the LC of patients with depression (Bissette et al., 2003). 
The link between stress and depression is strengthened by 
the observation that in post-traumatic stress disorder, 50% 
of patients develop depression (Pitman et al., 2012). In ad-
dition, patients with melancholic depression suffer from hy-
perarousal, anxiety, and sleep disturbances and have elevated 
norepinephrine levels in the plasma and cerebrospinal fluid 
(Wong et al., 2000). The treatment of depression frequently 
requires targeting the LC-norepinephrine system with sero-

tonin-norepinephrine reuptake inhibitors and norepineph-
rine reuptake inhibitors (Zhou, 2004). 

Other disorders like chronic neuropathic pain can in-
duce depression associated with noradrenergic impairment 
(Alba-Delgado et al., 2013). In pain-related anxiety, corti-
cotropin-releasing hormone induces activation of extracel-
lular signal-regulated kinase 1/2 signaling to upregulate LC 
function (Borges et al., 2015). Stress is known to increase the 
firing of LC neurons (Bingham et al., 2011), which, in turn, 
induces arousal and can precipitate anxiety and aversion 
(McCall et al., 2015). 

Patients with PD commonly suffer from sleep disturbanc-
es, a non-motor symptom thought to be related to LC pa-
thology (Braak et al., 2003; Abbott et al., 2005). As previous-
ly mentioned, the LC norepinephrine system is part of the 
sleep-wake cycle through projections to wake-promoting re-
gions (Szabadi, 2013; Schwarz, 2015). Almost all PD patients 
suffer from sleep disturbances with individual variability, 
which include disordered breathing, vivid dreaming and ex-
cessive daytime sleepiness (Chaudhuri et al., 2006; Verbaan 
et al., 2008). The LC system is known to be involved in che-
moreception to maintain normal breathing, a function that 
is disrupted in PD (Oliveira et al., 2017). PD patients also 
suffer from cognitive impairment, even in the early stages of 
the disease (Weintraub et al., 2015). We suggest that these 
impairments may be understood as disruptions in LC’s com-
putational functions (adaptive gain, unexpected uncertainty, 
generation of latent states).

Motor Symptoms in Parkinson’s Disease
Motor symptoms of PD arise in humans when ~80% of do-
pamine neurons are lost in the substantia nigra (Rommel-
fanger and Weinshenker, 2007). Interestingly, this may not 
be sufficient to generate motor symptoms. Pharmacological 
application of MPTP, a drug that selectively destroys dopa-
mine cells, causes significant dopamine loss in the nigrostri-
atal system yet does not generally result in profound motor 
symptoms. When MPTP is combined with pharmacolog-
ical ablation of the LC, the classic motor symptoms of PD 
emerge (Marien et al., 1993; Rommelfanger and Weinshen-
ker, 2007). Mice that lack the norepinephrine transporter 
gene are partially protected from MPTP toxicity, suggesting 
that extracellular norepinephrine may be protective against 
dopamine cell death (Rommelfanger et al., 2004). Interest-
ingly, ascending LC projections to the forebrain are not the 
only contributors to PD, as dysfunction of the descending 
cerulospinal tract may also play a key role in rigidity (Paulus 
and Jellinger, 1991).

Typical motor symptoms of PD become apparent when 
α-synucleinopathy can be detected and substantia nigra 
deterioration occurs (Braak et al., 2003). α-Synuclein, a pre-
synaptic protein thought to regulate neurotransmission, is 
overexpressed in PD and believed to contribute to dysregu-
lation of homeostasis, cell death, and may contribute to dis-
ease propagation (Stefanis, 2012). Interestingly, α-synuclein 
plaques are not only involved in compartmentalization of 
dopamine in the substantia nigra, but also alter the storage 
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of norepinephrine in the dentate gyrus (Yavich et al., 2006). 
It has been suggested that α-synucleinopathy might interfere 
with an antioxidant role for norepinephrine. Both extracel-
lular dopamine and norepinephrine can prevent free radical 
formation and act to protect neurons against oxidative stress 
(Troadec et al., 2002; Traver et al., 2005). This protective role 
could explain why norepinephrine transporter knockout 
protects against MPTP toxicity. The antioxidative role of cat-
echolamines is further supported by the localization of dopa-
mine β-hydroxylase, the enzyme that catalyzes the hydroxyl-
ation of dopamine to norepinephrine, to the mitochondrial 
membranes of LC neurons (Issidorides et al., 2004).

Copper-Rich Food for Thought
Copper is an essential cofactor for dopamine β-hydroxylase 
(Schmidt et al., 2018). Under normal conditions, copper 
levels are enriched in the LC (Schmidt et al., 2019) and are 
higher than in the substantia nigra (Zecca et al., 2004). In 
particular, copper is thought to play a protective role in these 
brain regions, and copper dysregulation could contribute 
to neuronal cell death. One hypothesis is that the protective 
effect of copper could be due to the anti-oxidative role of su-
peroxide dismutase 1, a copper-dependent enzyme (Genoud 
et al., 2017; Trist et al., 2017). The malfunction of superoxide 
dismutase 1 in the substantia nigra of PD patients may con-
tribute to dopaminergic cell loss (Trist et al., 2019). Consis-
tent with this idea, there is a decrease in copper levels and 
expression of copper transporter Ctr1 in both the substantia 
nigra and LC of PD patients (Davies et al., 2014; Genoud et 
al., 2017). 

Interestingly, in Wilson’s disease, a classic disorder of cop-
per accumulation caused by a mutation in the copper trans-
porter ATP7B, patients often manifest with PD-like symp-
toms of tremor and gait impairment. These patients typically 
have abnormal serum catecholamine levels and suffer from 
similar neuropsychiatric symptoms as PD patients (Ben-
hamla et al., 2007). A recent study suggested that the role of 
ATP7B is to sequester intracellular copper, which is required 
for secretion of dopamine β-hydroxylase, and thus provides 
regulation of intracellular and extracellular catecholamine 
(Schmidt et al., 2018). For these reasons, we speculate that 
aberrance in the copper-regulated catecholamine balance 
may contribute to symptoms in PD.

Conclusion
In summary, the LC-norepinephrine system is a pontine 
neuromodulatory nucleus with broad projections throughout 
the forebrain, cerebellum, and spinal cord. Classic studies 
have implicated LC in a myriad  of functions such as arousal, 
behavioral flexibility, learning, memory, and wakefulness. 
LC neurons are remarkably homogeneous, especially when 
compared to other neuromodulatory structures. It is likely 
that functions of LC may be understood in terms of the rel-
evant efferent pathways, target structures, and local receptor 
heterogeneity. Mechanistically, LC-norepinephrine has long 
been studied as a modulator of synaptic plasticity, allowing 

local circuits to dynamically adapt in the face of new inputs. 
The many functions of LC may help explain symptoms of PD, 
a neurodegenerative disease that is now understood to be a 
dysfunction of both the dopamine and norepinephrine sys-
tem. LC-norepinephrine is neuroprotective in PD and its loss 
may contribute to both motor-related and non-motor-related 
symptoms. Thanks to modern research using cell-type-specif-
ic techniques, the circuit logic of LC is slowly becoming clear, 
with implications for understanding and treating disease.
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