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Abstract

Dynamic decisionmaking requires an intact medial frontal cortex. Recent work has com-
bined theory and single-neuron measurements in frontal cortex to advance models of
decision making. We review behavioral tasks that have been used to study dynamic
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decision making and algorithmic models of these tasks using reinforcement learning
theory. We discuss studies linking neurophysiology and quantitative decision variables.
We conclude with hypotheses about the role of other cortical and subcortical structures
in dynamic decision making, including ascending neuromodulatory systems.

1. Introduction

Nervous systems evolved in highly dynamic environments. Adaptive

behavior in the natural world requires not just learning which actions

improve survival, but also changing behavior as the environment changes.

This describes an active feedback process in which organisms interact with

the environment through actions, learn from feedback, and adjust future

actions adaptively. The ability to behave flexibly is a ubiquitous feature

of life, ranging from flies (Ofstad, Zuker, & Reiser, 2011) to humans.a

Despite the ubiquity of flexible decision making, it is a historically under-

studied problem in systems neuroscience. Progress in reinforcement learning

over the past two decades has provided a biologically plausible and mathe-

matically sophisticated framework for studying these problems (Bertsekas &

Tsitsiklis, 1996; Sutton & Barto, 1998). Parallel progress in tool develop-

ment in mice has enabled the dissection of neural circuits needed for detailed

biological insight (Luo, Callaway, & Svoboda, 2018). The intersection of

these two fields—reinforcement learning and neural circuit dissection—

holds promise to further our algorithmic- and implementation-level under-

standing of cognition.

This chapter reviews behavioral assays for investigating value-guided

behavior, explores biologically plausible algorithms of value-based decision

making, and ends with an overview of the neural systems thought to instan-

tiate these functions. We highlight recent evidence demonstrating value

computations in the medial prefrontal cortex (mPFC) and cortico-basal-

ganglia loops. Given the myriad decision making dysfunctions seen in

patients with mental illnesses, understanding its neural basis on multiple

levels is crucial for developing targeted therapies (Cáceda, Nemeroff, &

Harvey, 2014).

a It has even been observed in organisms without nervous systems (pea plants; Dener, Kacelnik, &

Shemesh, 2016).
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2. Value-based decision making

Decision making is at the heart of many fields, including economics,

political science, psychology, engineering, medicine, and neuroscience.

A decision is defined as a deliberative process that results in commitment

to a categorical proposition (Gold & Shadlen, 2007). Decisions are the result

of integrating both external (e.g., sensory) as well as internal evidence (e.g.,

predictions). These two domains have largely been studied in the context of

perceptual (i.e., external evidence) and value-based (i.e., internally gener-

ated evidence) decision-making tasks (Gold & Shadlen, 2007; Yu, 2014).

Within each domain, quantitative mathematical frameworks have provided

semantically meaningful interpretations of neural activity in key brain struc-

tures. A key concept is the decision variable, which “represents the accrual of

all sources of priors, evidence, and value into a quantity that is interpreted by the

decision rule to produce a choice” (Gold & Shadlen, 2007). The decision variable

represents the common currency used by the brain to generate a single

categorical action among all possibilities.

Value-based decision making tasks require subjects to choose on the

basis of expected utility or subjective value (Glimcher, Dorris, & Bayer,

2005; Sanfey, Loewenstein, McClure, & Cohen, 2006; Sugrue, Corrado,

& Newsome, 2005). Typically, sensory stimuli are salient, which minimizes

perceptual uncertainty. Decisions aremade on the basis of values learned over

long time periods (Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006) or

values learned over short timescales (Lau & Glimcher, 2005; Sugrue,

Corrado, & Newsome, 2004; Tsutsui, Grabenhorst, Kobayashi, & Schultz,

2016). Importantly, these values are not sensory properties of stimuli (like

brightness or contrast) but are internal variables that must be learned through

experience. Compared to perceptual tasks, the subjective nature of value-

based tasks makes them much more difficult to control. However, rigorous

formalisms from the fields of economics (Rangel, Camerer, & Montague,

2008) and reinforcement learning (Sutton & Barto, 1998) have greatly

benefited the study of value-based decisions. As such, these tasks are well-

poised to address questions about representations of cognitive information.

2.1 Pavlovian systems
Pavlovian behavior describes innate, reflexive behavioral responses to stim-

uli that have been assigned value (Rescorla, 1988). The phenomenon was

discovered by Ivan Pavlov while conducting studies of the digestive system
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in dogs (Pavlov & Anrep, 1928).b In the case of reward, the Pavlovian

response is preparatory (e.g., approach) and consummatory. In the case of

punishment, the Pavlovian response is avoidance (Rangel et al., 2008).

These responses can be innate (e.g., avoidance of predator odors) or learned

through experience. Owing to their simplicity, Pavlovian behavioral tasks

have been invaluable in studying the neural basis of reward learning. One

of the most celebrated examples at the intersection of reinforcement learning

and neuroscience—that midbrain dopamine neurons encode reward predic-

tion errors—was discovered in monkeys performing Pavlovian behaviors

(Schultz, Dayan, & Montague, 1997). The simplicity of Pavlovian tasks

is also limiting, particularly if there is a mismatch between the innate

Pavlovian behavior and the response needed to obtain reward (e.g., with-

hold an action to obtain reward; Dayan, Niv, Seymour, & Daw, 2006).

2.2 Habitual systems
Habitual behavior describes the mapping of a large range of arbitrary motor

responses to stimuli, through repeated reinforcement. Habit systems in the

brain learn through trial-and-error over relatively long timescales (Balleine &

O’Doherty, 2010). Once learned, values are thought to be cached and

behavior can be carried out “automatically.” As such, habits are thought

to be computationally cheap but inflexible (Daw, Niv, & Dayan, 2005).

It can also be difficult to unlearn habitual behavior. This particular feature

is the rationale for outcome devaluation, a gold-standard test of habitual

behavior. In outcome devaluation experiments, animals are first trained to

associate a stimulus with a response (e.g., pressing a lever in response to a

tone) to receive a reward. Following training, the outcome is devalued

either by pairing with sickness or making the outcome freely available before

the task. Animals are then tested to see if they respond to the stimulus.

Continued behavioral responses are consistent with habitual behavior

(Balleine & O’Doherty, 2010).

2.3 Goal-directed systems
Goal-directed systems are responsible for flexible decision making. They

are thought to compute the outcomes associated with particular actions

on fast timescales. As such, they are sensitive to changes in environmental

contingencies. Outcome devaluation is also used to test the contribution

of goal-directed systems to behavior (Balleine & O’Doherty, 2010).

b Although it is commonly stated that Ivan Pavlov used a bell as a stimulus, this story appears to be

apocryphal (Cambiaghi & Sacchetti, 2015).
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A reduction in responding is taken as evidence that behavior was driven

largely by goal-directed systems. This chapter focuses on delineating

the contributions of goal-directed systems to flexible decision making.

We will focus largely on behaviors, primarily because, in contrast to studies

of sensory decision making, it is paramount to have a controlled behavior, in

which the experimenter can quantify hidden variables, such as value.

3. Matching behavior

Several behavioral tasks have been used to study flexible decision

making: outcome devaluation, reversal learning, set shifting, foraging,

“mixed-strategy” games, and matching behavior. Matching behavior (or

the matching law) is a type of behavior that we will argue provides excel-

lent conditions to study continual value-based learning. In matching tasks,

animals freely choose among two or more options to harvest reward

(Herrnstein & Heyman, 1979). Matching describes the tendency of animals

to “match” the fraction of choices to a particular option with the fraction

of rewards received from that option. Mathematically, matching describes

the following relationship:

ciXN

i¼1
ci
¼ riXN

i¼1
ri

(1)

where ci is the number of choices allocated to option i and ri is the number

of rewards obtained from option i, given N possible options. Matching

behavior was first observed in pigeons (Herrnstein, 1961) and has since been

observed in mice (Bari et al., 2019; Fonseca, Murakami, & Mainen, 2015),

rats (Gallistel, Mark, King, & Latham, 2001; Graft, Lea, & Whitworth,

1977), monkeys (Lau & Glimcher, 2005; Sugrue et al., 2004; Tsutsui

et al., 2016), and humans (Pierce & Epling, 1983). Matching behavior is

typically highly dynamic, with animals switching between options on fast

timescales. In trial-based tasks, animals typically switch from one option

to another with a mode of 1 trial. However, animals remain reward sensitive,

and repeat recently rewarded choices. As such, it can be considered a form

of goal-directed behavior.

3.1 Task conditions
Experimental psychologists use tasks in which reward delivery is contingent

on schedules of reinforcement (Ferster & Skinner, 1957). Two commonly

5Dynamic decision making and value computations

ARTICLE IN PRESS



used schedules are called “variable ratio” and “variable interval.” Matching

behavior is classically observed in tasks with variable interval schedules.

Variable ratio schedules are intuitive—reward is simply delivered with

a fixed probability, much like flipping a (biased) coin. If given the choice

between two variable ratio schedules, the optimal policy is to choose the

higher probability option exclusively. Note that exclusively choosing

one option is trivially consistent with matching behavior since all choices

are allocated to one option, and all rewards are received from that option.

Variable-ratio-schedule tasks are typically called “two-armed bandit” tasks

and tasks with changing probabilities are called “dynamic two-armed

bandit” tasks or, if the probabilities reverse, “probabilistic reversal learning”

tasks. In variable interval schedules, reward is delivered after a fixed time has

elapsed. Once the time has elapsed, that option is “baited,” guaranteeing

reward delivery once chosen. This feature is thought to make these tasks

ethologically relevant to study foraging. Although this seems like a trivial

change, it changes the optimal policy significantly, which will be expanded

on below. Intuitively, if given the choice between two variable interval

schedules, it does not make sense to choose one option exclusively.

Instead, one should occasionally probe the lower-probability option, to

not miss out on a baited reward. In these circumstances, matching behavior

emerges. In modern, trial-based tasks, discrete versions of variable interval

schedules are used, to allow for independent control over inter-trial intervals.

Variable ratio and variable interval schedules are not necessarily different

categories but may be thought of as two extremes of a competitive foraging

environment (Sakai & Fukai, 2008a). Under this interpretation, “baited”

rewards are withdrawn with a particular probability. Variable interval sched-

ules describe environments where the withdrawal probability is 0, imitating

herbivore foraging environments without competitors. Intermediate with-

drawal probabilities between 0 and 1 imitate competitive foraging envi-

ronments where food may be intercepted by competitors. Variable ratio

schedules are ones where the withdrawal probability is 1, which may resem-

ble the foraging of carnivores.

3.2 Matching behavior is generally a suboptimal
probabilistic policy

Given the task conditions that engender matching behavior, a natural

question to ask is whether animals are matching because they are aware

of baiting (i.e., accounting for environmental statistics) or are they agnostic

to it? A key insight into this problem was developed by Sakai and Fukai

(2008b), which we expand on below.
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For simplicity, we will assume two choices (options a and b). Matching

Eq. (1) then reduces to the following form

ca
ca + cb

¼ ra
ra + rb

and
cb

ca + cb
¼ rb

ra + rb
(2)

Matching occurs when the relative fraction of choices to option i, ci,

“matches” the relative fraction of rewards, ri, from option i. Rearranging

either equation gives ra
ca
¼ rb

cb
. In other words, matching occurs when the

mean reward from all options is equated. Written compactly,

r̂a ¼ r̂b (3)

The average reward from both options can be written as

r̂ ¼ r̂aπa + r̂ bπb (4)

where πi is the probability of choosing option i. Because we have two

options, πb¼ 1� πa. We assume that the policy is controlled by a parameter

x, yieldingc

r̂ðxÞ ¼ r̂aðxÞπaðxÞ+r̂ bðxÞπbðxÞ (5)

The parameter x explicitly influences the policy and implicitly influences the

reward probabilities. Under variable-interval schedules, the longer one has

stayed away from an option, the higher the probability of reward when that

option is eventually selectedd

c For example, assume πa(x) is a softmax function: πaðxÞ ¼ 1
1 + e�x.

d The mean reward obtained is a function of x. In variable-interval tasks, this is correct—the animal’s

policy influences whether it is able to take advantage of the baiting rule. The longer the animal abstains

from choosing an option, the greater the probability of reward when the animal chooses it. To express

the baiting rule mathematically, we write the probability of reward from option i as

PiðtÞ ¼ 1� 1� pið Þt+1 (6)

where pi is the base reward probability and t is the number of consecutive trials since that optionwas last

chosen. This equation states that the probability of reward asymptotically grows from pi to 1 the longer

option i is unchosen. The mean return from option i can be written as

r̂ iðxÞ ¼
X∞
t¼0

1� πiðxÞð ÞtπiðxÞPiðtÞ ¼
X∞
t¼0

1� πiðxÞð ÞtπiðxÞ 1� 1� pið Þt+1� �

¼ pi
πiðxÞ+pi 1� πiðxÞð Þ (7)

These equations can be used to test whether matching is optimal, in closed form.
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Tomaximize reward, we take the derivative of r̂ðxÞwith respect to x and
set it equal to 0.

dr̂ðxÞ
dx

¼ 0

¼ r̂ aðxÞ dπaðxÞdx
+ r̂bðxÞ dπbðxÞdx

� �

+
dr̂aðxÞ
dx

πaðxÞ+ dr̂bðxÞ
dx

πbðxÞ
� �

(8)

This equation defines the optimal probabilistic policy. The first set of terms

in parentheses is the explicit change in behavior when x is changed. The

second set of terms is the implicit change in the environment brought about

by the animal’s policy. One may hypothesize that this first computation

(explicit change in behavior) is easy for the brain to perform while the sec-

ond computation (implicit change in environment) is much more difficult.

Sakai and Fukai’s critical insight was to recognize that the brain might ignore

this second computation, which yields the reduced form

dr̂ðxÞ
dx

¼ 0 ¼ r̂aðxÞ dπaðxÞdx
+ r̂bðxÞ dπbðxÞdx

(9)

It can be shown that solving Eq. (9) yields matching behavior. In other

words, the solution is when r̂a ¼ r̂b . Under what conditions is matching

optimal?

Fig. 1 provides a geometric intuition for how the policy influences

reward in standard matching paradigms. Both options follow variable inter-

val schedules (pa ¼ 0.4;pb ¼ 0.1). Light and dark blue illustrate r̂a and r̂b ,

respectively, as a function of the policy. The consequences of baiting are

clear. The less often option a is chosen, the greater the probability of reward

when it is chosen. The orange trace illustrates r̂ which, from Eq. (4), is the

reward rate from both options, weighted by the probability of choosing each

option. The optimal reward is at the maximum of this function, which

occurs at P(choice to option a) � 0.86. Matching behavior, when r̂ a ¼ r̂b
(Eq. 3), occurs when the two blue traces intersect one another. In standard

matching paradigms, matching is the optimal probabilistic policy. However,

in this circumstance matching can occur either if animals are aware of envi-

ronmental statistics (Eq. 8) or if they ignore it (Eq. 9).

There is a strong-inference experiment that can test whether animals will

continue to exhibit matching behavior, even when it is suboptimal. If they
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continue to show matching behavior, this is evidence that they likely do not

take into account environmental statistics to make decisions. If they show

optimal behavior, then they likely are. The key experiment is to only let

one option follow a variable-interval schedule. The second option should

deliver reward with a fixed reward probability (variable-ratio schedule).

This example is illustrated in Fig. 2 (pa ¼ 0.3, variable-ratio option; pb ¼
0.24, variable-interval option). It is clear that option a, the variable ratio

option, does not benefit from baiting. No matter how often it is chosen,

the probability of reward is fixed. In this task, matching is not the optimal

solution. When these types of tasks have been tested, matching behavior has

been observed (Herrnstein &Heyman, 1979; Vyse & Belke, 1992;Williams,

1985), including in humans (Savastano & Fantino, 1994). Under the theory

proposed by Sakai and Fukai, these findings indicate that animals behave

as if they are not aware of environmental statistics. This should not be

taken as evidence that animals are unable to calculate these environmental

statistics—simply that under these task conditions, they behave as if they

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 Matching is the optimal probabilistic policy in variable-interval/variable-
interval tasks.
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do not. Manipulations designed to encourage optimal behavioral can

be successful—for example, rewards that differ in magnitude rather than

probability, and allowing practice without reinforcement (Tunney &

Shanks, 2002).

3.2.1 Animals do not adopt deterministic switching policies
One limitation of the argument above is that it is limited to probabilistic

policies. Deterministic switching policies (i.e., sample the other arm every

n choices) are the true optimal policies. For example, if given two variable-

interval options in which the base probabilities are pa¼ 0.4 and pb¼ 0.1, the

optimal policy is to choose option a four times and choose option b once.

This is because, according to Eq. (6), after not being selected for four con-

secutive trials, the probability of reward from option b has climbed from 0.1

to 0.4095, at which point the probability of reward is greater than option a,

and it should be chosen. After option b has been chosen, the probability

of reward drops again to 0.1, the probability of reward on option a is

now 0.64 (since it has not been chosen for one trial), and option a should

be chosen.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Matching is not optimal in variable-interval/variable-ratio tasks.
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These policies are easy to diagnose, since stay duration histograms will

not display a characteristic exponential shape. Under the hypothesis that

animals are adopting a deterministic switching policy, stay durations

should instead display a bimodal shape. We are not aware of any human

or animal studies demonstrating such behavior, although a computational

study trained artificial neural networks which exhibited these switching pol-

icies in certain conditions (Wang et al., 2018).

3.2.2 Matching behavior vs probability matching
Matching behavior should not be confused with probability matching.

Matching behavior and probability matching are observed in very different

task conditions. Probability matching refers to the tendency of subjects

to match the relative fraction of choices to the probability of reward

in two-armed bandit tasks (Mongillo, Shteingart, & Loewenstein, 2014). In

two-armed bandit tasks, unlike matching behavior tasks, reward probability

does not depend on past choices—the options follow variable-ratio sched-

ules. For example, if pa ¼ 0.75 and pb ¼ 0.25, probability matching occurs

when subjects choose option a 75% of the time and option b 25% of the

time. This is clearly a suboptimal policy, since the subject should choose

option a 100% of the time.

Mathematically, probability matching can be written as

ca
ca + cb

¼ pa
pa + pb

(10)

where pi is the probability of reward associated with option i. Unlike

matching behavior, there is no circumstance in which probability matching

is optimal. Intuitively, in a two-armed bandit task, the optimal policy is to

exclusively choose the high-probability option. To see more rigorously

how matching behavior and probability matching are incompatible, note

that the actual reward received from option i is ri¼ pi � ci. Matching behavior

is therefore

ca
ca + cb

¼ ra
ra + rb

¼ pa � ca
pa � ca + pb � cb (11)

With fixed reward probabilities, matching behavior is obtained when ca ¼ 0

or cb ¼ 0, which is incompatible with probability matching. In two-armed

bandit tasks, matching behavior is (trivially) to exclusively choose one

option - the optimal policy.
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Interestingly, probability matching and undermatching, the tendency to

behave more randomly than perfect matching behavior, may share the same

underlying mechanism. If subjects believe the world is more unstable or

prone to change than it truly is, both of these phenomena can emerge

(Shanks, Tunney, & McCarthy, 2002; Yu & Cohen, 2009; Yu &

Huang, 2014).

3.3 Dynamic foraging tasks
In addition to the ethological relevance of matching behavior, a useful fea-

ture is the tendency of animals to exhibit highly flexible behavior, switching

from one option to another on short timescales. However, one limitation of

classic matching paradigms is reward contingencies are typically fixed within

sessions and varied across sessions. Practically, both trial-by-trial algorithmic

studies of behavior and neurophysiologic studies of flexible behavior benefit

from task designs that better capture the full dynamic range of matching

within session. Take the example in Fig. 3. Matching behavior is typically

illustrated in these types of plots, with the relative reward ratio on the x-axis

and choice ratio on the y-axis. Imagine a single session with fixed reward

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Perfect matching
Undermatching
Biased matching

Fig. 3 Dynamic foraging tasks allow for better characterization of behavior.
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contingencies that yield a reward ratio of �0.8 and a choice ratio of �0.6.

This single data point would be consistent with both undermatching (the

blue curve; tendency to behave more randomly than perfect matching)

and biased matching (the orange curve; tendency to prefer one choice more

than another). Since these two hypotheses have very different algorithmic

and neural underpinnings, it is useful to use a task design that allows one

to measure along multiple choice/reward ratios. Dynamic foraging tasks

are variable-interval/variable-interval tasks with multiple reward contin-

gency changes in one session (Gallistel et al., 2001; Lau & Glimcher,

2005; Sugrue et al., 2004; Tsutsui et al., 2016). This task variant elegantly

solves this problem.

4. Algorithms underlying matching behavior

Matching is a description of macroscopic, averaged behavior. An

important question therefore is how does matching behavior emerge from

trial-by-trial behavior?

4.1 Melioration
Melioration is among the earliest trial-by-trial algorithms developed to solve

this problem (Herrnstein & Vaughan, 1980). This algorithm states that

behavior should tend toward the option with the highest local rate of rein-

forcement (the highest ri
ci
ratio), which yields matching behavior in the limit.

This algorithm was studied extensively by Herrnstein and others, largely to

contrast with theories of optimal decision making (Herrnstein, 2000).

4.2 Local matching
Local matching is another algorithm designed to yield matching behavior

(Sugrue et al., 2004). Under local matching, the agent exponentially inte-

grates reward from each option and maps the local reward ratio to a proba-

bility of choice.

r̂a
r̂a + r̂ b

¼ PðcaÞ (12)

where r̂ i is the local estimate of reward. For example, r̂ i can be updated as

r̂ i ¼ r̂ i + αðR � r̂ iÞ (13)
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each time option i is chosen (where R is reward). Although melioration

and local matching both do a reasonable job describing behavior, deep

insight is limited since both of these algorithms were designed to exhibit

matching behavior.

4.3 Covariance-based update rules
A general insight into this problem was developed by Loewenstein and

Seung (2006). Assume a change in synaptic weights ΔW is given by the

following form

ΔW ¼ α � covðR,NÞ (14)

where α is a plasticity rate, R is reward, and N is neural activity. It can be

shown that synaptic plasticity update rules of this form converge to matching

behavior. Examples of these update rules include

ΔW ¼ α � ðR � EðRÞÞN (15)

ΔW ¼ α � RðN � EðNÞÞ (16)

ΔW ¼ α � ðR � EðRÞÞðN � EðNÞÞ (17)

where E(X) is the expected value. These particular update rules are equiv-

alent to the learning rules in the direct actor and actor-critic reinforcement

learning algorithms (Dayan & Abbott, 2001; Sakai & Fukai, 2008a, 2008b).

These results demonstrate that matching behavior can be the outcome of

very simple learning rules, a remarkably deep insight and one that makes

it possible to more confidently interpret neural correlates of value-based

decision making in these behaviors.

4.4 Logistic regressions
One of the most common means of analyzing behavior in dynamic foraging

tasks is to calculate logistic regressions to predict choice as a function of

reward history and choice history (Fonseca et al., 2015; Lau & Glimcher,

2005; Sul, Jo, Lee, & Jung, 2011; Tsutsui et al., 2016). These models take

the following form

log
P ca tð Þð Þ

1� P ca tð Þð Þ
� �

¼
XN
i¼1

βRi Ra t � ið Þ � Rb t � ið Þð Þ

+
XN
i¼1

βci ca t � ið Þ � cb t � ið Þð Þ + β0

(18)
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where

RaðtÞ ¼
1, if option a was rewarded

0, if either option was not rewarded

�
(19)

caðtÞ ¼
1, if option a was chosen

0, if option b was chosen

�
(20)

and vice versa for Rb(t) and cb(t).

These particular models are powerful since they can capture arbitrary

linear combinations of reward and choice history (up toN trials into the past)

to predict upcoming choices. A frequent observation is that choices have

a positive dependence on reward history (βRi coefficients), often multiple

trials into the past. The interpretation is that previous rewarded choices rein-

force future choices to that option. Previous choices (generally 1–2 trials)

tend to have negative coefficients (βci coefficients), meaning animals tend

to switch their choices over short timescales, regardless of reward history.

Interestingly, negative βci coefficients are generally not seen in tasks without

baiting (Parker et al., 2016). Given the arguments above suggesting that

animals behave as if they are not aware of the baiting rule, one potential

explanation is that animals are implementing a simple “switch” heuristic

to increase reward rate.

A major limitation of the logistic regression formulation is that only lin-

ear combinations of the input can be used. An immediate consequence of

this can be seen by observing that when Ra(t)� Rb(t)¼ 0, the model cannot

discriminate whether it was option a that was not rewarded or option b.

A solution to this problemmay exist, since it has been shown that the logistic

regression model is identical to an action-value reinforcement learning

model with identical learning and forgetting rates (Katahira, 2015). This

suggests that the action-value reinforcement learning model may be a suit-

able template to build interpretable algorithms that capture the essence of

matching behavior.

4.5 Action-value reinforcement learning algorithm
(Q-learning)

The action-value reinforcement learning (or Q-learning) algorithm is a

general-purpose learning algorithm that keeps track of the values (i.e.,

expected future reward) of available actions and makes decisions based on

the difference between action values (Watkins & Dayan, 1992). It has been

widely applied both in neuroscience (Akam et al., 2017; Li & Daw, 2011;
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Samejima, Ueda, Doya, & Kimura, 2005; Sul, Kim, Huh, Lee, & Jung,

2010) and machine learning (Mnih et al., 2015). If we assume a task with

two actions, a common implementation is to assume a single state and update

the Q-values as follows. If action on trial t ¼ a

Qt+1ðaÞ ¼ QtðaÞ+αðr �QtðaÞÞ (21)

Qt+1ðbÞ ¼ QtðbÞ (22)

The difference betweenQ-values is used as an input into a softmax function

to produce the probability of a choice.

Pðaction on trial t ¼ aÞ ¼ 1

1 + e�βðQtðaÞ�QtðbÞÞ (23)

Pðaction on trial t ¼ bÞ ¼ 1� Pðaction on trial t ¼ aÞ (24)

Forgetting can be introduced as (where action on trial t ¼ a)

Qt+1ðaÞ ¼ ζQtðaÞ + αðr �QtðaÞÞ (25)

Qt+1ðbÞ ¼ ζQtðbÞ (26)

Forgetting can be applied to just the unchosen action or both actions (Bari

et al., 2019; Farashahi, Rowe, Aslami, Gobbini, & Soltani, 2018; Hattori,

Danskin, Babic, Mlynaryk, & Komiyama, 2019; Katahira, 2015).

4.6 Bayesian inference
Bayesian inference algorithms use Bayes rule to iteratively update estimates

of reward probability. They are powerful since they estimate full probability

distributions, allowing them to make decisions that take into account uncer-

tainty in their estimates, as well as higher-order moments. For example, if

the algorithm estimates both options to have a mean reward probability

pa ¼ pb ¼ 0.5, but the uncertainty of pa > pb, then it is adaptive to choose

pa since the true mean reward rate might be higher, increasing reward in the

long term (Sutton & Barto, 1998). These algorithms have been used to argue

that matching might occur due to uncertainty about changing reward

dynamics (Yu & Huang, 2014). In general, they have seen limited use for

quantifying matching behavior, since simpler models often do well enough.

5. Movement vigor during flexible decision making

Decisions are much more complex than just discrete choices.

Behavior occurs in real-time and the nervous system must finely calibrate
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the vigor of movements. Vigor, often defined as reaction time plus speed of

movements, has long been studied in the context of motor control (Choi,

Vaswani, & Shadmehr, 2014; Reppert et al., 2018; Rigas, Komogortsev, &

Shadmehr, 2016). Recently, vigor has been appreciated as a reflection

of value (Shadmehr, Reppert, Summerside, Yoon, & Ahmed, 2019).

Vigor is increased by increasing reward (Summerside, Shadmehr, & Ahmed,

2018), decreased by increasing effort (Stelmach & Worringham, 1988), and

modulated on short, individual-decision timescales (Reppert, Lempert,

Glimcher, & Shadmehr, 2015).

From a normative perspective, modulating vigor in relation to value/

effort is an appropriate computation (Niv, Daw, Joel, & Dayan, 2007;

Yoon, Geary, Ahmed, & Shadmehr, 2018). Because increased vigor requires

greater energy (Hoyt & Taylor, 1981; Ralston, 1958; Selinger, O’Connor,

Wong, & Donelan, 2015), it is not always appropriate to move with high

vigor. However, in the context of a highly rewarding environment, it

can be worth increasing vigor to increase reward rate, since slowmovements

necessitate a longer time between movement initiation and receipt of

reward. It is clear that the brain modulates movement vigor to maximize

reward rates (Haith, Reppert, & Shadmehr, 2012).

In the context of flexible decision making, moment-to-moment

vigor has been shown to be as flexible as choice-based behavior. One study

employed a dynamic two-armed bandit task in rats and found that latency

of task initiation was highly correlated with instantaneous probability of

reward (Hamid et al., 2016). Movement vigor was most strongly modulated

by the reward rate of the environment (how much reward can be expected

regardless of action), and much less so by relative reward rates (how much

better one option is relative to another). A number of studies have demon-

strated that recent reward history modulates movement vigor (Bari et al.,

2019; Del Arco, Park, Wood, Kim, & Moghaddam, 2017; Ottenheimer

et al., 2020; Simon, Wood, & Moghaddam, 2015).

6. Brain structures underlying flexible behavior

Extensive work, most of it in humans, has correlated changes in activ-

ity in multiple brain regions with variables from reinforcement-learning

models (e.g., Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Doya,

2008). The vast majority of these studies have focused on brief changes in

activity of neurons or fMRI signal (seconds or less) and model variables that

change on similar timescales.
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One key variable, common to many algorithms, is the reward prediction

error, the difference between actual and predicted reward. We know much

about these signals, especially in the context of foraging (Morris et al., 2006;

Parker et al., 2016). However, we knowmuch less about the representations

of the decision variables updated by these reward prediction errors. In par-

ticular, all algorithms of flexible behavior require memory: a summary of

previous interactions with the environment that allows for adaptive behavior

in the future. Whereas this memory signal—typically in the form of action

values or their arithmetic combinations—has been observed in several brain

structures, most notably the dorsal striatum (e.g., Samejima et al., 2005), it is

largely transient and occurs around the time of cues and actions. It is less

clear where these memory signals reside in between bouts of interaction

with the environment.

6.1 Cortico-basal-ganglia loops: Medial prefrontal cortex
and dorsomedial striatum

The medial prefrontal cortex (mPFC) and its downstream target, the dors-

omedial striatum, have long been studied as critical components for gener-

ating flexible behaviore One view of this circuit is that cortex provides

signals to bias action selection (Murakami, Shteingart, Loewenstein, &

Mainen, 2017) and the striatum is responsible for action selection itself.

Cortical circuitry is predominantly recurrent, which is hypothesized to

allow for integration of information which can be routed to striatum to bias

action selection. Striatal circuitry, in contrast, is predominantly inhibitory

and weak, with lateral inhibition motifs, facilitating a winner-take-all oper-

ation (Morita, Jitsev, & Morrison, 2016). The classic view of the striatum

considers two parallel cortico-striato-cortical loops, operating to initiate

and inhibit actions (Fig. 4). The “Direct” or “Go” pathway, consists of cor-

tical inputs to D1-expressing medium spiny neurons in the striatum, which

synapse onto globus pallidus pars interna (entopeduncular nucleus in the

rodent (Grillner &Robertson, 2016;Wallace et al., 2017)) and the substantia

nigra pars reticulata. These in turn synapse onto the thalamus, and back to

the cortex, completing the loop. The “Indirect” or “No-Go” pathway con-

sists of cortical inputs synapsing onto D2-expressing medium spiny neurons,

e In rodents, mPFC typically refers to (from dorsal to ventral) the anterior cingulate cortex, the prelimbic

cortex, the infralimbic cortex, and the medial orbital cortex. Dorsal mPFC usually means anterior cin-

gulate cortex and prelimbic cortex, and ventral mPFC usually means infralimbic cortex and medial

orbital cortex. In general, since the study of mPFC is still nascent, especially in mice, stereotactic coor-

dinates are useful for comparing studies.
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which in turn synapse onto the globus pallidus pars externa ! subthalamis

nucleus! globus pallidus pars interna and substantia nigra pars reticulata!
thalamus, and finally back to cortex (Shipp, 2017).

Lesions of either the medial prefrontal cortex or the dorsomedial striatum

are known to abolish goal-directed behavior and render behavior under the

control of sensorimotor associations (Balleine, Delgado, & Hikosaka, 2007;

Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006). Neurons in

rat dorsal mPFC predict upcoming outcomes, before they have been pres-

ented (Del Arco et al., 2017), and monitor action/outcome contingencies

(Hyman, Whitman, Emberly, Woodward, & Seamans, 2013; Simon et al.,

2015; Sul et al., 2010). Neurons in primate medial frontal cortex signal pre-

diction errors of action values (Matsumoto, Matsumoto, Abe, & Tanaka,

2007) and those in anterior cingulate cortex encode reward history as well

as reward prediction errorsf (Seo & Lee, 2007). In humans, fMRI studies

Fig. 4 Classic view of the “Direct” and “Indirect” striatal pathways. Adapted from
Shipp, S. (2017). The functional logic of corticostriatal connections. Brain Structure and
Function, 222(2), 669–706. https://doi.org/10.1007/s00429-016-1250-9.

f Comparisons between rodent and primate frontal structures should be taken with a grain of salt, as

anatomical homologies between these orders is weak (Uylings, Groenewegen, & Kolb, 2003).
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have revealed a role for medial frontal regions in encoding reward magni-

tude and value of chosen actions (Daw et al., 2006). Higher network coor-

dination between cortex and striatum predicts changes in learning and

decision making (Gerraty et al., 2018).

Recordings in the primate caudate, a homolog of the rodent dorsome-

dial striatum, have demonstrated encoding of action values and chosen

values, key signals in reinforcement learning models of behavior (Lau &

Glimcher, 2008; Samejima et al., 2005). Later studies discovered preferential

encoding of the difference of temporally discounted values, and encoding of

future actions (Cai, Kim, & Lee, 2011). Recordings in the dorsomedial stri-

atum of the rat have confirmed these findings (Ito &Doya, 2009, 2015; Kim,

Lee, & Jung, 2013; Seo, Lee, & Averbeck, 2012), and extended them by

demonstrating encoding of total value, necessary for modulating vigor

(Wang, Miura, & Uchida, 2013). Manipulation of striatal subpopulations

modulates choice-based behavior in a manner consistent with changes in

action values (Tai, Lee, Benavidez, Bonci, & Wilbrecht, 2012). Unilateral

activation of D1-expressing medium spiny neurons in the dorsomedial

striatum bias animals to make more contralateral actions. Conversely, uni-

lateral activation of D2-expressing neurons in the dorsomedial striatum

bias animals to make more ipsilateral actions. Similar results were obtained

with pharmacological manipulation of D1/D2 receptors in the primate

putamen (Ueda et al., 2017). These findings align with the classic view that

D1-expressing neurons are organized into the “Go” pathway to initiate

behavior, and D2-expressing neurons are organized into a “No-Go” path-

way to inhibit behavior.

Recent work has focused on mouse mPFC, a structure known to have

persistent working-memory-like neural correlates (Liu et al., 2014), as the

potential site where decision variables are maintained in between bouts of

interaction with the environment. Persistent activity is a viable network

mechanism for maintaining representations of decision variables in the times

between choices. Persistent activity, defined here as activity that lasts longer

than the time constants of synaptic inputs, was first described in the prefron-

tal cortex andmediodorsal thalamus of primates and is thought to be a critical

component of working memory (Fuster & Alexander, 1971).

We recently recorded from mPFC neurons, including those that pro-

jected to dorsomedial striatum, in mice performing a matching task (Bari

et al., 2019). Individual mPFC neurons showed persistent representations

of two key decision variables for matching behavior: relative value—used

to bias choices—and total value—used to bias response time (or “vigor”).
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Remarkably, these two forms of persistent activity showed different rates of

decay, that matched the behavior they supported. Relative-value activity

did not appear to decay during long inter-choice intervals (tens of seconds);

neither did the mouse’s memory of its choice policy (Fig. 5). In contrast,

total-value activity decayed slowly over long inter-choice intervals; like-

wise, mice made slower choices after long waiting times. These variables

did not appear to be robustly encoded by tongue premotor neurons.

These data suggest that cortico-basal-ganglia-thalamo-cortical loops main-

tain value-based decision variables, and that information flow in the circuit

is not a simple linear flow of computations.

Tool development has allowed for precise pathway-specific modulation.

In our recent study, we found that inactivation of the mPFC! dorsomedial

striatal pathway disrupted choice behavior and slowed vigor, consistent with

a disruption of cognitive variables necessary for value-based decision making

(Bari et al., 2019). This is similar to a recent study which demonstrated that

the mPFC! striatum and mPFC! thalamus pathways were necessary for

choice behavior, but not the mPFC!mPFC pathway (Nakayama, Ibañez-

Tallon, & Heintz, 2018). Another group demonstrated that the mediodorsal

!mPFC pathway, but not the mPFC!mediodorsal thalamus, is necessary

for updating understanding about the causal structure of actions, although

both were necessary for goal-directed behavior (Alcaraz et al., 2018).

This is consistent with the notion that the cortico-basal ganglia system is

critical for flexible behavior, since the former, but not the latter, pathway

is part of this system.

Taken together, these results highlight the key concept that the brain has

dedicated circuitry for different behavioral strategies, and that the rodent

dorsal medial prefrontal cortex and downstream dorsomedial striatum are

important structures for driving flexible behavior.

6.2 Neuromodulatory systems
Neuromodulatory systems are remarkably unique. These systems are each

composed of very small numbers of cells, yet have outputs that arborize

to span large volumes of tissue. This feature makes them poised to exert

global control over neural states and computations.

Midbrain dopamine is a particularly well-studied neuromodulator.

Dopamine neurons in the midbrain encode reward prediction errors, a crit-

ical variable in reinforcement learning models of flexible behavior (Bayer

& Glimcher, 2005; Cohen, Haesler, Vong, Lowell, & Uchida, 2012;
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Morris et al., 2006; Roesch, Stalnaker, & Schoenbaum, 2007; Schultz et al.,

1997). Manipulation of the dopamine system profoundly affects learning, for

both Pavlovian associations (Steinberg et al., 2013) and for flexible decisions

(Hamid et al., 2016; Parker et al., 2016). Dopamine densely innervates the

striatum, where it bidirectionally modulates the plasticity of corticostriatal

synapses, depending on the downstream receptor (Reynolds & Wickens,

2002). This feature makes dopamine an integral component that enables

the cortico-basal ganglia system to modulate flexible behavior.

Serotonin is comparatively less-well understood, in large part to substan-

tial heterogeneity in this system relative to midbrain dopamine. In large

thanks to tool development (Lima, Hromádka, Znamenskiy, & Zador,

2009), extracellular recording of single cell-type-identified serotonin

neurons has allowed for inroads to be made. Recent work has shown that

a subset of serotonin neurons in the dorsal raphe nucleus encodes value over

very long timescales (Cohen, Amoroso, & Uchida, 2015), which may relate

to the encoding of background reward rate, a key variable in models of opti-

mal foraging behavior (Charnov et al., 1976). Activation of dorsal raphe

serotonin neurons in mice performing a dynamic foraging task leads to

increases in learning rates (Iigaya, Fonseca, Murakami, Mainen, & Dayan,

2018) and promotes persistence in mice performing a patch foraging task

(Lottem et al., 2018). These findings must be interpreted with caution, how-

ever, since serotonin manipulation can have opposite effects on behavior,

depending on the outputs of distinct subpopulations of neurons (Ren

et al., 2018).

Norepinephrine produced by neurons in the locus coeruleus is thought

to be critical for behavioral flexibility. These neurons respond to salient

events, which has led to the hypothesis that norepinephrine is critical for

arousal and attention (Aston-Jones, Rajkowski, & Cohen, 2000; Carter

et al., 2010; Harley, 1987; Kety, 1970). Classic work demonstrated that

activation of locus coeruleus norepinephrine can alleviate forgetting in a

complex maze task (Devauges & Sara, 1991) and facilitate attentional shifts

(Devauges & Sara, 1990). Formal theories of norepinephrine suggest that

the system encodes unexpected uncertainty (Dayan & Yu, 2006; Yu &

Dayan, 2003, 2005) and facilitate exploitation/exploration of task contin-

gencies (Aston-Jones & Cohen, 2005).

6.3 Other structures
Although we have focused heavily on cortico-basal ganglia systems and neu-

romodulatory systems, flexible behavior relies on a much larger network of
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structures. The orbitofrontal cortex, and its upstream/downstream struc-

tures, are critical for flexible behavior. Examples include the orbitofrontal cor-

tex ! submedius nucleus pathway (Fresno, Parkes, Faugère, Coutureau, &

Wolff, 2019) and the amygdala ! orbitofrontal cortex pathway (Fiuzat,

Rhodes, & Murray, 2017). The orbitofrontal cortex encodes reward magni-

tude (Simon et al., 2015) and codes for chosen value and reward prediction

errors more strongly thanmPFC (Sul et al., 2010). Other important structures

include the posterior parietal cortex and posteromedial cortex (Funamizu,

Kuhn, & Doya, 2016) and the ventral hippocampus (Yoshida, Drew,

Mimura, & Tanaka, 2019). This list is by no means exhaustive and serves

simply to indicate that large portions of the brain are critical for flexible

decision making.

7. Future directions

Despite sophisticated theoretical and modeling insight about flexible

decision making, there remains a gap in our knowledge of how the entire

loop—sensory signal to discrete action—is instantiated in neural circuitry.

One direction that we believe is due for further study is expanding action

space to more than two discrete actions, especially using continuous

action space. This is likely to enhance our theories of value representation

in the mPFC, extending beyond the relatively impoverished regime of

binary choices.
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