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Abstract1

Anhedonia, the loss of pleasure, is prevalent and impairing. Parsing its computational basis2

promises to explain its transdiagnostic character. We argue that one manifestation of anhedonia—3

reward insensitivity—may be linked to limited memory capacity. Further, the need to economize4

on limited capacity engenders a perseverative bias towards frequently chosen actions. Anhedonia5

may also be linked with deviations from optimal perseveration for a given memory capacity, a6

pattern that causes inefficiency because it results in less reward for the same memory cost. To test7

these hypotheses, we perform secondary analysis of a randomized controlled trial testing κ-opioid8

receptor (KOR) antagonism for anhedonia, as well as analyses of three other datasets. We find9

that anhedonia is associated with deficits in efficiency but not memory, whereas KOR antagonism10

(which likely elevates tonic dopamine) increases memory and efficiency. KOR antagonism therefore11

has distinct cognitive effects, only one related to anhedonia.12
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Introduction13

Anhedonia, the loss of pleasure or lack of reactivity to pleasurable stimuli, is observed in many14

psychiatric illnesses, including major depressive disorder, bipolar disorder, schizophrenia, anx-15

iety disorders, post-traumatic stress disorder, substance use disorders, autism, and attention-16

deficit/hyperactivity disorder [1, 2, 3, 4, 5, 6, 7, 8, 9]. The transdiagnostic character of anhedonia17

suggests a common mechanism across disorders. The most systematic attempts to formalize this18

common mechanism have utilized concepts from reinforcement learning [10]. Early models posited19

that anhedonia corresponds to a reduction in reward sensitivity [11, 12], but the predictions of20

these models have not been consistently validated, suggesting a more complex picture [13]. Here,21

we argue that one neglected source of complexity is the interplay between reward sensitivity and22

cognitive capacity limits.23

In reinforcement learning theory, states (e.g., stimuli, context) are mapped to actions by a24

learned policy. The amount of memory needed to store a policy is dictated by the mutual infor-25

mation between states and actions; any physical system (such as the brain) has a limited memory26

capacity. One implication of limited capacity is reward insensitivity and, thus, some aspects of27

anhedonia may arise from cognitive resource limitations.28

Under capacity limits, policies must be compressed by discarding some state information [14,29

15, 16]. This results in the tendency to reuse frequently chosen actions across multiple states—a30

form of perseveration, the tendency to repeat actions independently of their reinforcement history.31

The theory of policy compression is normative: it specifies an optimal level of perseveration for32

a given capacity limit. Empirically, compression strategies may differ, with some policies yielding33

more reward than others for the same cost. We refer to deviations from optimal perseveration34

as inefficiency because it results in a suboptimal use of finite memory (less reward for the same35

memory utilization). This phenotype is conceptually distinct from capacity, and can be measured36

separately. We argue here that capacity and efficiency may be key phenotypes for understanding37

cognitive disturbances in anhedonia. We show that these can be estimated from behavioral data38

on a widely used behavioral assay, the Probabilistic Reward Task (PRT), and that they reveal new39

aspects of anhedonia that would otherwise have been invisible.40

We also address the underlying neural mechanisms and treatment implications. Our previous41

work suggested that tonic dopamine should determine the allocation of cognitive resources for42

task performance based on reward rate [17, 18]. Reduction in tonic dopamine should therefore43

produce insensitivity of task performance to reward rate [19]. It stands to reason that increasing44

tonic dopamine should increase reward sensitivity. We demonstrate that this is consistent with the45

effects of κ opioid receptor (KOR) antagonism, which elevates tonic dopamine [20, 21, 22, 23, 24].46

We find that efficiency also increases, suggesting that tonic dopamine may not only determine the47

amount of resources available but also the efficiency of their allocation. Mechanistically, this might48

be implemented through dopamine-dependent changes in learning rate for perseveration. Finally,49

we find that anhedonia is associated with changes in efficiency but not memory, highlighting the50

clinical utility of distinguishing these computational phenotypes.51

Results52

Policy complexity and efficiency in anhedonia after κ-opioid receptor antagonism53

We performed a secondary analysis of an 8-week, multicenter, placebo-controlled, double-blind,54

randomized trial to test the effects of KOR antagonism for anhedonia (Figure 1A) [25, 26]. Because55

this trial identified a significant treatment effect of KOR antagonism for anhedonia (as measured by56

the Snaith-Hamilton Pleasure Scale, SHAPS), we sought to understand the cognitive basis of this57

improvement. We analyzed a total of 55 participants (KOR antagonist group: N = 24; placebo58

group: N = 31) who completed both a baseline and post-treatment Probabilistic Reward Task59

(PRT). Owing to previously-reported baseline differences in anhedonia between the two groups60
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Figure 1: Trial and task design.
A) Participants were randomized to 8 weeks of placebo (N = 31) or a KOR antagonist (N = 24)
and completed the PRT at baseline and at week 8.
B) On each trial of the PRT, participants fixated on a cross, followed by the presentation of a
face without a mouth, followed by either a short (11.5mm) or long (13mm) mouth in the face.
Participants responded by pressing one of two keyboard keys and completed 200 trials in two
blocks of 100 trials. The bottom right shows an example reward schedule where the long stimulus
is rewarded more often than the short stimulus. The mapping between response, stimulus, and
reward was counterbalanced between participants.

(mean SHAPS ± SD: placebo 33.03 ± 5.54; KOR 37.29 ± 8.89, p = 0.0338), we analyzed the61

pre-treatment groups separately.62

The PRT is a reward-based decision making task that asks participants to discriminate two63

similar stimuli (Figure 1B) [27, 28]. Unbeknownst to participants, one of the two stimuli yields64

reward more often than the other when correctly identified. According to the theory of policy65

compression [16], performance in this task (average reward) depends on the amount of information66

participants encode about the underlying state (i.e., the stimulus identity), quantified by the mu-67

tual information between states and actions—a participant’s policy complexity. Each participant is68

assumed to have a capacity limit (upper bound on policy complexity), which delimits their achiev-69

able performance. If participants maximally utilize their capacity, their average reward should70

fall along an optimal reward-complexity frontier, as shown in Figure 2A,B. In the PRT, maximal71

reward can be obtained at a policy complexity of 1 bit, corresponding to a policy that perfectly72

discriminates the two stimuli. At the other extreme, a subject with no capacity will generate a73

policy that ignores the stimuli entirely. Participant policies tend to lie close to the optimal frontier,74

indicating that they are utilizing most of their capacity. At the low end of the policy complexity75

range, participant policies fall off the optimal frontier (Figure 2F,G), indicating under-utilization76

of resources (inefficiency)—a pattern also observed in previous studies [15, 29].77

At 8 weeks, placebo treatment resulted in a decrease in both policy complexity and reward,78

while KOR antagonism yielded an increase in both (Figure 2C). This resulted in significant between-79

group differences for both policy complexity (Figure 2D; mean change in policy complexity (post-80

treatment minus baseline) ± SEM: placebo, -0.0245 ± 0.0141; KOR, 0.0281 ± 0.0211, p = 0.0362)81

and reward (Figure 2E; mean change in reward (post-treatment minus baseline) ± SEM: placebo,82
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Figure 2: Changes in policy complexity and efficiency as a function of KOR antago-
nism.
A,B) Reward-complexity relationship for the placebo and KOR groups at baseline and post-
treatment. The black line shows the reward-complexity frontier, which indicates the optimal reward
as a function of policy complexity.
C) Mean ± SEM reward-complexity relationship as a function of treatment (placebo or KOR an-
tagonism) and time (baseline or post-treatment).
D) Change in policy complexity (post-treatment minus baseline) as a function of treatment.
E) Change in reward (post-treatment minus baseline) as a function of treatment.
F,G) Relationship between inefficiency and complexity for the placebo and KOR groups. Overlaid
lines are from a linear mixed-effects model fitting inefficiency as a function of policy complexity,
treatment, and time.
H) Change in inefficiency (post-treatment minus baseline) as a function of treatment.
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-0.0165 ± 5.61 × 10−3; KOR, 0.0154 ± 6.53 × 10−3, p = 4.81 × 10−4). Following treatment, the83

KOR group also became significantly more efficient compared to the placebo group (Figure 2H;84

mean change in inefficiency (post-treatment minus baseline) ± SEM: placebo, 0.0130 ± 4.80×10−3;85

KOR, -0.0109 ± 4.04 × 10−3, p = 5.68 × 10−4). Thus, KOR antagonism increases average reward86

through a combination of increasing both policy complexity and efficiency.87

Policy compression makes the additional prediction that more complex policies should result88

in slower response times, since the brain must inspect more bits to find a coded state [16, 18, 30].89

Indeed, we found that KOR antagonism, relative to placebo, slowed participants down (mean90

change in response times (post-treatment minus baseline) ± SEM: placebo, -59.3ms ± 23.4; KOR,91

13.6ms ± 20.4, p = 0.0274).92

To better understand how KOR treatment changed the relationship between inefficiency and93

policy complexity, we fit a linear mixed effects model predicting inefficiency as a function of policy94

complexity, treatment, and time. We identified two relevant effects: a significant treatment ×95

time interaction (coefficient = -0.0405, p = 4.23 × 10−5), which has the effect of lowering the96

intercept, and a significant policy complexity × treatment × time interaction (coefficient = 0.187,97

p = 1.76 × 10−3), which has the effect of increasing the slope. The combination of the change in98

intercept and slope has the net effect of increasing efficiency as a function of policy complexity,99

revealing that KOR treatment increases efficiency independent of its changes to complexity. We100

will develop this insight further with our reinforcement learning modeling. Overall, these results101

suggest two orthogonal effects of KOR treatment: increases in complexity and increases in efficiency.102

Stated another way, participants gain increased cognitive resources and make better use of those103

resources.104

Reinforcement learning model of KOR antagonism105

We developed a cost-sensitive reinforcement learning model to gain insight into how KOR antag-106

onism affects decision making. We adapted a Q-learning model, ubiquitous in the reinforcement107

learning literature [31]. This model estimates the expected reward associated with each action for108

each stimulus (called Q-values) and updates these estimates by learning from the outcome (pres-109

ence or absence of reward). Since the optimal policy under policy compression contains a marginal110

action probability term to engender perseveration (state-independent actions), we augmented our111

model with a marginal action probability term that was similarly estimated on a trial-by-trial ba-112

sis. Our model contained a reward learning rate, αlearn, to govern the learning of action values, a113

perseveration learning rate, αpersev, to govern the learning of the marginal action probability, and a114

reward sensitivity parameter, β, that determines the balance between action values and persevera-115

tion in driving behavior. The β parameter is linked to capacity, where higher capacity is associated116

with higher values of β. Given the structure of our model, β is equivalent to a parameter scaling117

reward magnitude, as has been posited in anhedonia [12].118

To model the effects of treatment, we allowed KOR and placebo to scale these parameters. Based119

on formal model comparison (Extended Data Table 1), we selected a model that separately scaled120

the perseveration learning rate, αpersev, and the reward sensitivity, β, as a function of treatment.121

We confirmed that our model could recover αpersev and β, the parameters of interest (Extended122

Data Table 2). To provide confidence in the ability of our model to capture key characteristics123

of the data, we first fit the model to participant data and then had the model perform the PRT124

(using the parameter estimates for each participant) to generate a synthetic dataset (Extended125

Data Figure 1). This simulated dataset captured all key features of our data (see Supplementary126

information).127

Having confirmed that our model could generate realistic data and recover parameters of inter-128

est, we turned our attention to parameter estimates to better understand how treatment affected129

decision making. We found that placebo and KOR antagonism scaled the perseveration learning130

rate, αpersev in opposite directions (Figure 3A; posterior 95% credible interval; placebo, -2.96 to131

-0.82; KOR, 0.61 to 1.96). The difference between KOR antagonism and placebo corresponds to132
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Figure 3: Scaling of reinforcement learning parameters as a function of KOR antago-
nism.
A) Posterior distribution of parameter values for scaling of αpersev as a function of treatment. Scal-
ing is multiplicative, where values greater than 0 indicate that treatment increases the parameter
value, whereas values less than 0 indicate that treatment decreases the parameter value.
B) Posterior distribution of treatment effect for scaling αpersev, estimated as the difference in scaling
between KOR and placebo.
C) Posterior distribution of parameter values for scaling of β as a function of treatment.
D) Posterior distribution of treatment effect for scaling β.
E) Heatmap showing mean reward obtained as a function of αpersev and β.
F) Effect of treatment in parameter space. Black line shows the optimal αpersev for each value of β.

the net effect of treatment on αpersev, which was positive and excluded 0, showing that treat-133

ment increases perseveration (Figure 3B; difference in posterior 95% credible interval (KOR minus134

placebo), 1.77 to 4.32). We similarly found that placebo and KOR antagonism scaled the reward135

sensitivity, β, in opposite directions (Figure 3C; posterior 95% credible interval; placebo, -0.143 to136

-0.050; KOR, 0.037 to 0.138), with a treatment effect that was positive and excluded 0 (Figure 3D;137

difference in posterior 95% credible interval (KOR minus placebo), 0.114 to 0.254).138

To gain insight into how scaling these parameters affects decision making, we simulated datasets139

where we only changed parameters of interest (Extended Data Figure 1; Extended Data Table 3).140

Increasing only αpersev produces an increase in efficiency and a small decrease in policy complexity.141

The increase in efficiency manifests as a change in the intercept, but not the slope, of the relationship142

between inefficiency and policy complexity. Increasing only β produces a relatively large increase143

in policy complexity, which is consistent with the theoretical link between larger β and increased144

capacity. It also produces an increase in efficiency for low-complexity policies. Increasing both145

αpersev and β, like we find for KOR antagonism, produces both an increase in policy complexity146

and an increase in efficiency. The increase in efficiency manifests as a change in both the intercept147

(decrease) and the slope (increase) of the relationship between inefficiency and policy complexity,148

like our empirical findings.149

We gained insight into the relationship between KOR antagonism and optimal behavior by150

visualizing the relationship between αpersev, β, and reward, while holding αlearn fixed (Figure 3E).151

As β increases, for the optimal αpersev, the net reward obtainable also increases, consistent with152

our theory linking higher β to higher capacity and higher capacity to greater reward. We also find153

that increasing perseverative learning is most beneficial at lower values of β (i.e., lower capacity),154

consistent with the idea that perseveration is increasingly optimal as subjects become more resource155
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limited. In Figure 3F, we can see that the effect of KOR antagonism is to shift both αpersev and β156

closer to an optimal regime. A notable finding is the increased αpersev at baseline for the placebo157

group relative to the KOR group. This is consistent with the baseline difference in SHAPS between158

these groups, with the placebo group having lower SHAPS: the larger αpersev estimates for this159

group is closer to the optimal regime and is consistent with less severe anhedonia.160

Policy complexity and efficiency as a function of hedonic tone161

Because the original study identified a significant improvement in the SHAPS following KOR an-162

tagonism [25], we sought to identify which mechanism—increased policy complexity, increased163

efficiency, or both—is associated with anhedonia. We first examined the relationship between he-164

donic tone and reward learning in a non-clinical population. We recruited 100 participants from165

Amazon Mechanical Turk and implemented a version of the PRT suitable for online delivery [32].166

Participants completed the SHAPS and reported a wide range of scores (mean SHAPS ± SD: 11.45167

± 6.54, range 0 to 36). We show the reward-complexity relationship in Figure 4A. For visualization168

purposes only, we perform a median split of participants on the basis of SHAPS.169

Unlike the effects of KOR antagonism, we found that SHAPS did not predict policy complexity170

(coefficient = −5.24 × 10−3, p = 0.241). We did, however, identify a significant relationship171

with inefficiency. We fit a linear regression predicting inefficiency as a function of SHAPS and172

policy complexity and identified a significant intercept change (coefficient for effect of SHAPS =173

9.55 × 10−3, p = 6.54 × 10−3) but not a significant slope change (coefficient for SHAPS × policy174

complexity interaction = −0.0182, p = 0.394). Given our simulations exploring the effects of175

changing parameters (Extended Data Figure 1), a change of intercept without a change of slope is176

consistent with hedonic tone affecting perseveration (αpersev) and not capacity (β).177

We reanalyzed two prior PRT datasets and found similar effects on the relationship between178

inefficiency and policy complexity (Extended Data Figure 2). The first was a transdiagnostic179

sample of patients (control group: N = 25; clinical group: N = 41, 18 with bipolar disorder, 23180

with major depressive disorder) [33, 34]. These groups differed significantly in baseline anhedonia181

(mean anhedonic Beck Depression Inventory-II subscore ± SD: control, 0.72 ± 1.02; clinical, 5.22182

± 3.78, p = 2.22× 10−7; mean Mood and Anxiety Symptom Questionnaire-Anhedonic Depression183

subscale ± SD: control, 51.5 ± 12.6; clinical, 77.1 ± 19.3, p = 1.45 × 10−7). Consistent with184

differences in anhedonia, when we analyzed inefficiency as a function of policy complexity and185

group, we identified a significant intercept difference (coefficient for clinical group = 5.29 × 10−3,186

p = 0.022) without a concurrent slope difference (coefficient for policy complexity × clinical group187

interaction = −1.71 × 10−3, p = 0.443). We additionally found no difference in policy complexity188

between the two groups (mean policy complexity ± SEM: control, 0.371 ± 0.043; clinical, 0.333 ±189

0.024, p = 0.412).190

The second dataset we analyzed was a test of a longstanding hypothesis relating reduced191

dopamine to anhedonia [35, 36]. In this double-blinded study, participants received either placebo192

or low-dose pramipexole—thought to reduce phasic dopamine release—and performed the PRT193

(placebo group: 13; pramipexole group: 11) [37]. When we analyzed inefficiency as a function of194

policy complexity and treatment, we identified a significant intercept effect (coefficient for treat-195

ment = 7.82× 10−3, p = 0.043) without a significant slope effect (coefficient for policy complexity196

× treatment = −1.90 × 10−3, p = 0.615). We also found no difference in policy complexity as197

a function of treatment (mean policy complexity: placebo, 0.297 ± 0.043; pramipexole, 0.319 ±198

0.057, p = 0.757).199

Reinforcement learning model of hedonic tone200

We next fit a reinforcement learning model similar to the one we used for the KOR dataset, except201

now we allowed αpersev and β to scale as a function of SHAPS. We found that increases in SHAPS202

were associated with less perseveration (Figure 4C; posterior 95% credible interval: -0.739 to -203
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Figure 4: Changes in complexity, efficiency, and reinforcement learning parameters as
a function of hedonic tone.
A) Reward-complexity tradeoff as a function of hedonic tone. For illustration only, participants are
median split on the basis of SHAPS scores into ‘Low SHAPS’ (low anhedonia) and ‘High SHAPS’
(high anhedonia).
B) Inefficiency-complexity relationship as a function of hedonic tone. For illustration only, the color
lines are regression fits denoting extremes of SHAPS in our dataset (blue is lowest SHAPS = 0,
orange is highest SHAPS = 36).
C) Left: Posterior distribution of parameter values for scaling of αpersev as a function of SHAPS.
Right: An example demonstrating scaling for an increase in SHAPS of 1 SD (from 0.5 SD below
the mean (blue) to 0.5 SD above the mean (orange)).
D) Left: Posterior distribution of parameter values for scaling of β as a function of SHAPS. Right:
Scaling for the same increase in SHAPS.
E) Effect of variation in SHAPS in parameter space. Black line shows the optimal αpersev for each
value of β.
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0.046). In contrast, anhedonia had no effect on modulating β, in contrast to KOR antagonism204

(Figure 4D; posterior 95% credible interval: -0.097 to 0.066). In parameter space, the net effect205

of an increase in SHAPS is to move participants away from an optimal regime (Figure 4E). Taken206

together, these data support the notion that hedonic tone spans the axis of efficiency, not capacity.207

Discussion208

We leveraged a theory of resource-limited reinforcement learning to shed light on the cognitive209

structure of anhedonia. Building on prior work demonstrating impairments in reward sensitivity,210

we decomposed these impairments into separate effects of policy complexity (state-dependence of211

an action policy) and efficiency (utilization of cognitive resources). We found that KOR antagonism212

affected both of these measures, whereas anhedonia is associated only with reduced efficiency.213

The finding that anhedonia is not associated with reduced complexity is surprising, in part, be-214

cause complexity determines reward sensitivity, and reward insensitivity appears to be the cardinal215

feature of anhedonia (though see [13] for more nuance). There are a number of explanations for this216

apparent disconnect. One is that anhedonia may be more psychologically related to the concept217

of ‘liking,’ the pleasure associated with reward, rather than ‘wanting,’ the motivation furnished by218

reward learning [38], both of which are relevant for anhedonia. In our paradigm, reward sensitivity219

is related to ‘wanting,’ which would render the PRT an inappropriate assay to measure deficits220

in ‘liking.’ Further, the SHAPS is not designed to disambiguate these different aspects of reward221

processing, but newer scales such as the Dimensional Anhedonia Rating Scale [39], the Temporal222

Experience of Pleasure Scale [40], and the Positive Valence Systems Scale [41] provide insight into223

the multidimensional nature of anhedonia.224

It is also plausible that anhedonia might be a consequence of reduced reward learning, not225

reduced reward sensitivity [42]. A limitation of our study is that our model could not recover226

the reward learning rate (Extended Data Figure 1). It is worth noting that our findings seem at227

odds with an influential reinforcement learning account of anhedonia implicating decreased reward228

sensitivity as the key causal variable [12]. Interestingly, the parameterization of that model links229

increased reward sensitivity with increased perseveration. Our model orthogonalizes reward sensi-230

tivity from perseveration, suggesting what was previously identified as blunted reward sensitivity231

may have been impaired perseverative learning (see Supplementary materials).232

Under our computational framework, perseveration is closely related to habits, since habits can233

be similarly thought of as state-independent actions within a particular context [43]. A prediction234

of our findings is that anhedonia may not only manifest as a deficit in perseveration, but may235

also manifest as a deficit in habit formation. Intriguingly, recent work on the origin of habits has236

revealed that they are largely divorced from reward [44]. If true, this would highlight a cognitive237

deficit in anhedonia unrelated to reward processing. Altogether, our findings motivate a future238

research program studying habit formation in anhedonia, both important for better understanding239

this symptom and because it may form the basis of clinically relevant behavioral interventions.240

The aspect of KOR antagonism which appears to be unrelated to anhedonia (increased policy241

complexity) suggests relevant clinical utility outside of anhedonia. As one example, we hypothe-242

size KOR antagonism may prove beneficial in treating cognitive deficits in chronic schizophrenia,243

a clinically-relevant domain with pressing needs for psychopharmacological treatment. Cognitive244

deficits in schizophrenia are well-established [45] and cognitive deficits are among the strongest245

predictors of functional outcomes [46]. Despite decades of effort, there are no first-line pharma-246

cotherapies for cognitive symptoms in schizophrenia [45] (though recently-developed muscarinic247

acetylcholine receptor agonists show promise [47, 48, 49]). We recently demonstrated that patients248

with chronic schizophrenia have reduced policy complexity relative to healthy control participants249

[29]. It stands to reason that increasing complexity in chronic schizophrenia, perhaps via KOR an-250

tagonism, might treat a subset of cognitive deficits and improve functional outcomes. Although it251

may seem counterproductive to administer dopaminergic drugs in schizophrenia, numerous studies252
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have shown that dopamine-releasing agents can be safe to administer in this population [50, 51, 52].253

Neurobiologically, our finding that KOR antagonism increases complexity is similar to our254

previous results following administration of dopaminergic medications in Parkinson’s disease [18].255

A new subtlety of our findings here is that tonic dopamine may control the efficiency of resource256

allocation, a finding that is perhaps related to the role of dopamine in habit formation [53, 54, 55].257

Further, anhedonia may be related to more subtle disruptions in the dopaminergic system than258

had been previously thought, as more global disruptions would likely reduce complexity as well.259

Conclusion260

We leveraged computational principles to identify two mechanisms of action of KOR antagonism—261

one related to anhedonia (increase in efficiency), and one unrelated to anhedonia (increase in262

policy complexity). We hypothesize that the increase in complexity can be leveraged for other263

indications, including possibly cognitive deficits in psychosis. Our results provide a clear example264

of the potential for computational psychiatry to provide transdiagnostic insights that integrate265

across levels of analysis.266

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2024. ; https://doi.org/10.1101/2024.04.09.24304873doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.09.24304873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods267

KOR antagonism: randomized control trial design and participants268

We conducted a secondary analysis of a phase 2a clinical trial designed to test the efficacy of a novel269

κ-opioid receptor (KOR) antagonist for the treatment of anhedonia [25, 26, 56]. The trial was an 8-270

week, multicenter, placebo-controlled, double-blind, randomized study in a transdiagnostic sample271

of participants with anhedonia. Active drug was JNJ-67953964 (Aticaprant, previously CERC-272

501 and LY2456302), a selective KOR antagonist dosed at 10mg daily. Since this trial used a273

biomarker-based proof-of-mechanism approach, the preregistered primary outcome was a change in274

functional magnetic resonance imaging of the ventral striatum during reward anticipation, measured275

at baseline and 8 weeks. Preregistered secondary outcomes were a change in the mean Snaith-276

Hamilton Pleasure Scale (SHAPS), a clinically-validated measure of anhedonia [57], assessed every277

2 weeks, and a change in the response bias - a measure of reward learning - on the Probabilistic278

Reward Task. The trial was preregistered at NCT02218736. We report here a secondary analysis279

of the Probabilistic Reward Task, which was not part of the preregistered protocol.280

Participants were aged 21 to 65, recruited from six US centers, had a SHAPS of at least 20281

(assessed using dimensional scoring guidelines [58]), and had a DSM-IV TR diagnosis of major282

depressive disorder, bipolar I or II depression, generalized anxiety disorder, social phobia, panic283

disorder, or post-traumatic stress disorder. Participants were enrolled after providing informed284

consent to a protocol approved by each local institutional review board. Our dataset for secondary285

analysis consisted of 55 patients (KOR antagonist group: N = 24 [44%]; mean age ± SD, 39.2 ±286

13.9 years; 10 males [42%]; placebo group: N = 31 [56%]; mean age ± SD, 40.8 ± 13.7 years; 12287

males [39%]) [26]).288

Non-clinical population: study design and participants289

We conducted an online-based study to assess how variation in hedonic tone affects reward learning290

in a non-clinical population. We recruited 100 participants (mean age ± SD, 41.9 ± 11.5; 62 males291

[62%]) from Amazon Mechanical Turk. We selected our sample size based on an effect size we292

assumed would be half of what we identified for the KOR dataset (f2 = 0.1297) with a desired293

power of 90% to maximize the probability of identifying an effect. These participants completed the294

Probabilistic Reward Task followed by a demographic survey and the SHAPS. Participants gave295

informed consent, and the Harvard University Committee on the Use of Human Subjects approved296

the experiment.297

Clinical population: study design and participants298

We reanalyzed data from patient populations performing the PRT [33, 34]. The dataset consisted299

of 66 total participants (control group: N = 25 [38%]; mean age ± SD, 38.4 ± 10.8; 14 males300

[56%]; clinical group: N = 41 [62%]; mean age ± SD, 41.9 ± 10.3; 24 males [59%]; 18 with301

bipolar disorder [44%], 23 with major depressive disorder [56%]). The control participants had302

no psychiatric diagnosis and were taking no psychoactive medications. In addition to the PRT,303

participants completed the Beck Depression Inventory-II and the Mood and Anxiety Symptom304

Questionnaire.305

Pramipexole administration: study design and participants306

We reanalyzed data from a double-blind, randomized trial assessing the effect of pramipexole, a307

D2/D3 receptor agonist, on reward learning in the PRT [37]. Participants (placebo group: 13308

[54%]; mean age ± SD, 24.8 ± 3.2; 8 males [62%]; pramipexole group: 11 [46%]; mean age ± SD,309

26.0 ± 5.8; 6 males [56%]) were randomized to placebo or pramipexole. In the pramipexole group,310

participants received a single 0.5mg dose, a low dose thought to act as a dopamine antagonist and311
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reduce phasic dopamine release. Participants completed the PRT 2 hours after receiving placebo312

or pramipexole.313

Snaith-Hamilton Pleasure Scale (SHAPS)314

The SHAPS is a 14-item questionnaire used to assess anhedonia across four domains: inter-315

est/pastimes, social interaction, sensory experience, and food/drink. Participants are asked to316

respond to pleasurable situations (e.g., I would enjoy being with my family or close friends) with317

one of the following responses on the basis of the last few days: strongly disagree, disagree, agree,318

strongly agree. According to dimensional scoring guidelines [58], scores range from 1 for strongly319

agree to 4 for strongly disagree, yielding a range of 14 to 56, with higher scores corresponding to320

greater anhedonia. The SHAPS is the only clinical measure of anhedonia that significantly changes321

with treatment in clinical trials [25, 59, 60].322

Probabilistic Reward Task (PRT)323

The PRT is a computerized decision making task designed to elicit learning in response to reward324

[27, 28]. On each trial, participants observe one of two difficult-to-discriminate stimuli and are asked325

to report which stimulus they observed. In the clinical trial, stimuli consisted of cartoon faces with326

either a short mouth (11.5 mm) or a long mouth (13 mm) presented for 100 ms and participants327

responded by pressing one of two keyboard keys (‘z’ or ‘/’). Participants completed 200 trials in328

two 100 trial blocks, instead of 300 trials as usual, owing to time constraints imposed by the clinical329

trial [25]. In the online-based task, stimuli consisted of images of either 10 squares/7 circles or 7330

squares/10 circles (with 8 variations of each) and participants reported whether they observed more331

squares or circles with one of two keyboard keys (‘A’ or ‘L’) [32]. Participants completed 300 trials332

in three 100 trial blocks. Importantly, and unbeknownst to participants, correctly responding to333

one stimulus yielded reward on 60% of trials (‘rich’ stimulus) while correctly responding to the other334

stimulus yielded reward on 20% of trials (‘poor’ stimulus). They were instructed that not all correct335

responses would yield a reward. The rich/poor stimuli and responses were counterbalanced across336

participants in both studies. For our analyses, we excluded the first 25 trials to allow behavior to337

stabilize. Our findings were qualitatively similar if we changed this trial exclusion threshold.338

Policy compression: a capacity limit applied to decisions339

All information processing systems—the human brain included—must contend with resource lim-340

itations when making decisions. These constraints take on many forms, including computational341

costs [61], metabolic costs [62], interference costs [63], and others [64]. Under policy compression,342

we formalize the cognitive cost as the mutual information between states and actions, the policy343

complexity :344

Iπ(S;A) =
∑
s

P (s)
∑
a

π(a|s) log π(a|s)
P (a)

(1)

where P (a) =
∑

s P (s)π(a|s) is the marginal probability of choosing action a under the policy.345

In general, we assume that policies are subject to a capacity constraint, an upper bound, C, on346

policy complexity. Shannon’s noisy channel theorem states that the minimum expected number of347

bits to transmit a signal across a noisy information channel without error is equal to the mutual348

information. Therefore, if the optimal policy requires more memory than the subject possesses,349

then it must compress the policy, or render it less state-dependent. We define the optimal policy,350

π∗, as:351

π∗ = argmax
π

V π, subject to Iπ(S;A) ≤ C (2)
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where V π is the expected reward under policy π:352

V π =
∑
s

P (s)
∑
a

π(a|s)Q(s, a) (3)

and Q(s, a) is the expected reward for taking action a in state s.353

We can express our constrained optimization problem in the following unconstrained Lagrangian354

form:355

π∗ = argmax
π

βV π − Iπ(S;A)−
∑
s

λ(s)

(∑
a

π(a|s)− 1

)
(4)

where β ≥ 0, λ(s) ≥ 0 are Lagrangian multipliers. Solving this equation reveals that the optimal356

policy takes on the following form:357

π∗(a|s) ∝ exp[βQ(s, a) + logP ∗(a)] (5)

where P ∗(a) is the optimal marginal action distribution, which can be interpreted as a form of358

perseveration.359

The optimal policy takes the form of the familiar softmax distribution, common in the reinforce-360

ment learning literature. Here, the Lagrange multiplier, β, plays the role of the inverse temperature361

parameter. Note that although β typically takes on the role of balancing exploration/exploitation362

in reinforcement learning, we made no such appeals in deriving this policy. Moreover, β is a function363

of the policy complexity:364

β−1 =
dV π

dIπ(S;A)
(6)

At high policy complexity, when dV π

dIπ(S;A) is shallow, the optimal β is large and the policy is domi-365

nated by Q-values. At low policy complexity, the optimal β is close to 0, and Q-values have minimal366

impact on the policy. Moreover, when β is small, the perseveration term, logP ∗(a), dominates,367

and the policy is largely state-independent.368

To construct the empirical reward–complexity curves, in both datasets, we computed the average369

reward according to equation 3, where P (s) = [0.5, 0.5] and Q(s, a) = [ 0.2 0
0 0.6 ], by construction,370

and π(a|s) was calculated from empirical action frequencies. We estimated mutual information by371

computing the empirical action frequencies for each state for each session.372

Reinforcement learning modeling373

We constructed a cost-sensitive Q-learning model which contains three parameters (αlearn, αpersev,
and β) and estimates action values, Q(s, a), and marginal action probability, P (a), to generate
actions according to the following policy, mimicking the optimal policy under policy compression:

∆Q(s, a) = αlearn[r −Q(s, a)]

∆P (a) = αpersev[π(a|s)− P (a)]

π(a|s) ∝ exp[(βQ(s, a) + log(P (a)))]

where r = 1 if the current trial is rewarded and 0 otherwise. The key feature of our model is
a mechanism that allows treatment to multiplicatively scale αpersev and β (obtained after model
comparison, see below). The model scales parameters in the following manner:

αpersev = αpersev,baseline · 10spersev,treatment

β = βbaseline · 10sbeta,treatment

A scaling value of 0 results in no scaling, > 0 results in an increase, and < 0 results in a decrease.
For our online study, we scaled parameters as a function of the z-scored SHAPS in the following
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manner:

αpersev = αpersev,baseline · 10spersev·SHAPS

β = βbaseline · 10sbeta·SHAPS

We initialized Q(s, a) at 0 and P (a) at 0.5 and we assumed scaling terms equaled 0 on sessions
without treatment. We included all trials for analysis. Learning rates were constrained not to
exceed 1. We constructed hierarchical models to obtain estimates of each parameter. Parameters
were drawn from the following distributions:

αlearn ∼ Beta(alearn, blearn)

αpersev,baseline ∼ Beta(apersev,bpersev)

βbaseline ∼ Gamma(abeta,bbeta)

where we used Cauchy+(0,5) as a weakly-informative prior for each parameter. The gamma dis-
tribution was parameterized with a shape (abeta) and scale (bbeta) parameter. Finally, the scaling
terms were drawn according to

spersev,treatment ∼ N(0, 1)

sbeta,treatment ∼ N(0, 1)

αlearn, αpersev,baseline, and βbaseline were constrained at the group level (one parameter per partici-374

pant) and scaling terms were constrained at the treatment level (one parameter per treatment).375

We initially fit a model that scaled all parameters (slearn,treatment, spersev,treatment, sbeta,treatment),376

which produced an estimate of slearn,treatment that did not differ from 0, suggesting that treatment377

did not effect αlearn. We therefore compared this ‘full’ model to the ‘reduced’ model we present above378

(which does not scale αlearn). We performed model comparison using Pareto-smoothed importance379

sampling leave-one-out cross-validation to estimate the expected log predictive density, a validated380

measure of Bayesian model evaluation [65]. We found that our reduced model produced a similar381

fit. We next compared our reduced model to three simpler variants: one that only scaled αpersev,382

one that only scaled β, and one with no scaling of any parameters. Model comparison favored the383

model we present above which scales αpersev and β (Extended Data Table 1).384

We next performed posterior predictive checks. We used the mean of each parameter as a point385

estimate and simulated 200 trials of the PRT for each participant to mimic the dataset that was386

used to fit the model. We analyzed this simulated dataset in the exact manner we analyzed the387

ground-truth dataset.388

To provide confidence in our interpretation of parameter changes, we tested the ability of our389

model to recover known parameters. Using the same fictive, simulated dataset as above, we fit our390

reinforcement learning model and obtained recovered parameter estimates. We computed Pearson’s391

correlation between the known and recovered parameters (Extended Data Table 2).392

For our heatmap of reward obtained with different αpersev and β combinations, we ran 3,000393

independent simulations of the PRT for each combination of parameters. We fixed αlearn at 0.1423,394

the mean posterior estimate across all participants. We performed a grid search across thirteen395

logarithmically-spaced αpersev values from e−12 to e0, and ten β values from e−0.4 to e1.4.396

Models were fit using R 4.2.2 (accessed with RStudio 2022.12.0+353) using the Rstan package397

(version 2.26.13). We performed model comparison using the loo package (version 2.5.1).398

Statistical analyses399

For all group-level differences, we computed two-sided t-tests. In the KOR dataset, owing to400

repeated measures, we fit linear mixed effects models to predict 1) inefficiency and 2) the probability401

of choosing the richer option. Independent variables were policy complexity, treatment (placebo402
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or KOR), and time (baseline or post treatment), with a random intercept per participant. For the403

other datasets (online non-clinical, clinical, and pramipexole), we fit a linear regression to predict404

inefficiency. For the online non-clinical dataset, the dependent variables were policy complexity405

and z-scored SHAPS. For the clinical dataset, they were policy complexity and group (control or406

clinical). For the pramipexole dataset, they were policy complexity and treatment (placebo or407

pramipexole). All analyses were 2-sided with an α of 0.05.408
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Extended data580
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Extended Data Figure 1: Effect of changing reinforcement learning model parameters
on reward-complexity relationship and inefficiency. Parameter values for simulation are
given in Extended Data Table 3.
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Extended Data Figure 2: Policy complexity and inefficiency for reanalyzed PRT
datasets.
A) Clinical dataset from [33] and [34].
B) Pramipexole dataset from [37].
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Model

Scale αlearn Scale αpersev Scale β
Expected log predictive
density difference ± SE

Effective number
of parameters (p loo) ± SE

x x 0.0 ± 0.0 100.5 ± 1.2
x x x -1.8 ± 2.5 107.6 ± 1.3

x -14.7 ± 6.1 112.9 ± 1.4
x -29.2 ± 7.8 100.8 ± 1.1

-43.1 ± 10.1 98.5 ± 1.1

Extended Data Table 1: Model comparison using Pareto-smoothed importance sam-
pling leave-one out cross validation. A difference in the expected log predictive density of 4
points provides evidence in favor of a model. The first model, which scales αpersev and β, is favored
over the second, which scales all parameters, since it provides similar expected predictive accuracy
with fewer parameters.
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Parameter
Pearson Correlation Between

Actual and Recovered Parameter
(95% CI)

αlearn 0.412 (0.183 - 0.607)
αpersev 0.941 (0.862 - 0.983)

β 0.926 (0.884 - 0.952)

Extended Data Table 2: Parameter recovery.
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Simulation Low Parameter High Parameter Fixed Parameters

Changing αlearn αlearn = 0.09 αlearn = 0.18
αpersev = 2.5·10−4

β = 1.4

Changing αpersev αpersev = 2.5·10−4 αpersev = 2.5·10−2 αlearn = 0.14
β = 1.4

Changing β β = 1.4 β = 2.2
αlearn = 0.14

αpersev = 2.5·10−4

Changing αpersev & β
αpersev = 2.5·10−4

β = 1.4
αpersev = 2.5·10−2

β = 2.2
αlearn = 0.14

Extended Data Table 3: Parameters used for Extended Data Figure 1 simulations.
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Supplementary information581

Reinforcement learning model of KOR antagonism: behavioral simulations on582

the Probabilistic Reward Task583

Treatment increased policy complexity (Supplementary Figure 1D; mean change in policy com-584

plexity (post-treatment minus baseline) ± SEM: placebo, -0.0214 ± 7.69 × 10−3; KOR, 0.0269 ±585

8.32×10−3, p = 9.07×10−5) and reward (Supplementary Figure 1E; mean change in reward (post-586

treatment minus baseline) ± SEM: placebo, -0.0201 ± 4.36 × 10−3; KOR, 0.0199 ± 4.62 × 10−3,587

p = 7.21× 10−8). There was a significant decrease in inefficiency (Supplementary Figure 1H; mean588

change in inefficiency (post-treatment minus baseline) ± SEM: placebo, 0.0161 ± 3.50×10−3; KOR,589

-0.0149 ± 3.53× 10−3, p = 1.08× 10−7). Using the same linear mixed effects model to predict in-590

efficiency as a function of policy complexity, treatment, and time, we found a significant treatment591

× time interaction (coefficient = -0.0346, p = 1.94 × 10−7) and a significant policy complexity ×592

treatment × time interaction (coefficient = 0.290, p = 8.66× 10−4).593
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Supplementary Figure 1: Simulation: changes in complexity and efficiency as a func-
tion of KOR antagonism.
A,B) Reward-complexity relationship for placebo and KOR groups, at baseline and post-treatment.
C) Mean ± SEM reward-complexity relationship as a function of treatment and time.
D) Change in policy complexity as a function of treatment.
E) Change in reward as a function of treatment.
F-G) Inefficiency-complexity relationship for placebo and KOR groups.
H) Change in inefficiency as a function of treatment.
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Anhedonia model from Huys et al (2013)594

Huys et al (2013) developed a reinforcement learning model, fit to PRT data, describing anhedo-595

nia as a reduction in reward sensitivity [12]. We will show that the parameterization of reward596

sensitivity in this model produces a similar effect as our perseveration term.597

In their model, reward prediction errors are computed by scaling binary reward, r, by a reward
sensitivity parameter ρ. These reward prediction errors are multiplied by ϵ, the learning rate, to
iteratively update Q-values.

δ = ρr −Q(s, a)

∆Q(s, a) = ϵδ

Given the reward structure in the PRT, this has the effect of scaling Q-values by ρ as
[
ρ0.2 0
0 ρ0.6

]
.

These Q-values are used to update choice weights, which are fed through a standard softmax
decision rule to generate a policy:

W (s, a) = γI(s, a) + ζQ(s, a) + (1− ζ)Q(s̄, a)

π(a|s) ∝ exp(W (s, a))

The choice weights of this model contain two noteworthy components. The first is an instruction598

variable, I(s, a), where I(s, a) = 1 for the instructed action for a given stimulus, and 0 otherwise.599

Instructions are scaled by γ to capture how strongly instructions influence choice. The second600

component describes sensory ambiguity and allows Q-values for the non-presented stimulus - Q(s̄, a)601

- to ‘leak’ into the policy. This is done by the ζ parameter, where ζ ∈ [0.5, 1]; ζ = 1 describes602

no sensory ambiguity (only Q(s, a) contributes) and ζ = 0.5 describes complete sensory ambiguity603

(Q(s, a) and Q(s̄, a) contribute equally).604

To see how this sensory ambiguity rule leads to perseveration, we can define ζ = θ+0.5, where
θ ∈ [0, 0.5] and replace ζ in the choice weights:

W (s, a) = γI(s, a) + (θ + 0.5)Q(s, a) + (1− (θ + 0.5))Q(s̄, a)

which we can rearrange as

W (s, a) = γI(s, a) + θ(Q(s, a)−Q(s̄, a)) + 0.5Q(s, a) + 0.5Q(s̄, a)

Since the states are equiprobable (p(s) = 0.5), this latter set of terms, 0.5Q(s, a) + 0.5Q(s̄, a),
can be written as Es(Q(s, a)) =

∑
s p(s)Q(s, a), the expected Q-value of taking action a. We can

therefore write the weights as

W (s, a) = γI(s, a) + θ(Q(s, a)−Q(s̄, a)) + Es(Q(s, a))

Written this way, weights are a function of three variables: 1) I(s, a), the instructions, 2) Q(s, a)−605

Q(s̄, a), the difference in Q-values between the observed and non-observed states, to account for606

sensory ambiguity, and 3) Es(Q(s, a)), a state-independent value term which can be thought of as607

a kind of perseveration since it will generate an action bias.608

We ran a simulation to gain an intuition into how Es(Q(s, a)) engenders perseveration (Sup-609

plementary Figure 2). In this simulation, Q(s, a) =
[
ρ0.2 0
0 ρ0.6

]
, meaning Es(Q(s, a)) ∝ ρ0.6 for the610

richer option and ∝ ρ0.2 for the leaner option. Intuitively, Es(Q(s, a)) will proportionally favor the611

richer option as reward sensitivity grows, leading to an action bias.612
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Supplementary Figure 2: Increasing reward sensitivity (ρ) in the Huys et al (2013)
model leads to perseveration.
Increasing reward sensitivity (ρ) leads to increased perseveration (black). To demonstrate that the
Es(Q(s, a)) term is responsible for perseveration, we ran the same simulation with the Es(Q(s, a))
removed (blue). For this simulation, we used γ = 1 and ϵ = 0.25. Findings were insensitive to
choice of γ and ϵ.
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