A Bayesian Reanalysis of a Trial of Psilocybin Versus Escitalopram for Depression

Sandeep M. Nayak,1,* Bilal A. Bari,2 David B. Yaden,1 Meg J. Spriggs,3 Fernando E. Rosas,3 Joseph M. Peill,3 Bruna Giribaldi,3 David Erritzoe,3 David J. Nutt,3 and Robin Carhart-Harris4

Abstract

Background: A trial of psilocybin (COMP360) versus escitalopram for major depressive disorder (MDD) was reported as negative, as there was no significant difference in the primary outcome, mean change in the 16-item Quick Inventory of Depressive Symptomatology—Self-Report (QIDS SR-16). However, analyses using three other depression scales (17-item Hamilton Depression Rating Scale [HAMD-17], Montgomery and Åsberg Depression Rating Scale [MADRS], and Beck Depression Inventory 1A [BDI-1A]) all significantly favored psilocybin, although without a prespecified plan for multiple comparisons correction.

Methods: Bayesian reanalysis of a trial of two doses of psilocybin (25 mg) versus 6 weeks of escitalopram (20 mg) was done in 59 patients with MDD. We used skeptical priors, which bias estimates toward zero, and Bayes factors, which quantify evidence for or against a hypothesis. We report posterior estimates for the difference between psilocybin and escitalopram for four different depression scales.

Results: Using Bayes factors and “skeptical priors” that bias estimates toward zero, for the hypothesis that psilocybin is superior by any margin, we found indeterminate evidence for QIDS SR-16, strong evidence for BDI-1A and MADRS, and extremely strong evidence for HAMD-17. For the stronger hypothesis that psilocybin is superior by a “clinically meaningful amount” (using literature-defined values of the minimally clinically important difference), we found moderate evidence against it for QIDS SR-16, indeterminate evidence for BDI-1A and MADRS, and moderate evidence supporting it for HAMD-17. For all scales, we found extremely strong evidence for psilocybin’s noninferiority versus escitalopram. Findings were robust to prior sensitivity analysis.

Conclusions: The overall pattern of evidence provided by this Bayesian reanalysis supports the following inferences: (1) psilocybin did indeed outperform escitalopram in this trial, but not to an extent that was clinically meaningful and (2) psilocybin is almost certainly noninferior to escitalopram. These results provide a more precise and nuanced interpretation to previously reported results from this trial and support the need for further research into the relative efficacy of psilocybin therapy for depression with respect to current leading treatments.

Keywords: psilocybin, depression, Bayesian analysis, psychedelic
Introduction
A recent trial investigating psilocybin’s efficacy, relative to escitalopram, for major depressive disorder (MDD) reported no significant benefit relative to the standard of care. Specifically, two high doses of psilocybin (25 mg) versus 20 mg escitalopram for 6 weeks did not show a significant difference with respect to the 16-item Quick Inventory of Depressive Symptomatology–Self-Report (QIDS SR-16) scores from 7 to 10 days preintervention to a 6-week endpoint, which was the primary outcome of this trial. However, a closer look at the results reveals that psilocybin significantly outperformed escitalopram on all secondary outcomes, including three clinically validated depression scales.

Because there was no prespecified plan for multiple comparisons corrections, the formally allowable frequentist interpretation was that the primary outcome was indeterminate and that the secondary outcomes were uninterpretable. A Bayesian approach has the potential to extract more interpretable information from the results of this trial, overcoming some key limitations of the previous frequentist analysis.

Frequentist and Bayesian approaches in clinical trials
The results of Carhart-Harris et al highlight several drawbacks of frequentist methods. First, frequentist methods suffer from several problems arising from multiple comparisons. Because p-values are uniformly distributed when the null hypothesis is true, 5% of tests will be positive by chance alone, when $\alpha=0.05$. This necessitates special procedures to correct for multiple comparisons when multiple outcome measures are administered—a number of which can be arbitrary. Second, frequentist methods do not convey the probability of any particular hypothesis, dealing instead with the probability of the data (or more extreme data) assuming the null hypothesis is true.

Because of this, p-values cannot be interpreted as measures of confidence on the findings. Third, these methods rigidly separate hypothesis testing from effect size estimation, and results are often reported that are statistically significant but clinically meaningless. Fourth, fixed sample sizes are chosen on the basis of a priori assumptions about the true effect size. If the actual effect size is smaller than anticipated, the trial is underpowered and may miss a real effect; hence, a null result provides no insight into whether this is due to a lack of power or due to a genuine absence of effect. However, if the actual effect size is much greater, then the trial collects superfluous participants.

An alternative approach is to employ methods of Bayesian inference. Although these methods are still less often used, they address many of the limitations of frequentist methods. First, with appropriately chosen priors, Bayesian inference can bypass the multiple comparisons problem. Fewer false positive claims are made with confidence, which allows for more flexible use of multiple comparisons. Second, the Bayesian posterior distribution naturally allows for effect size estimation and hypothesis testing to be conducted simultaneously.

Third, and importantly for the specific case of clinical trials, Bayesian inference is flexible, modular, and allows for intuitive and meaningful clinical interpretations, rather than simple black/white dichotomization imposed by frequentist methods. In effect, the probability that a new intervention has any effect and the probability that it has a clinically meaningful effect (i.e., above an established criteria) can be determined naturally from the same posterior distribution. In addition, frequentist analyses can often be interpreted as special cases of Bayesian inference (i.e., when using uniform or “flat” priors), suggesting the two approaches are not entirely divorced from one another.

Another important benefit of Bayesian analysis is that it allows us to quantify evidence for a hypothesis, rather than just evidence against a null, an advantage that we leverage here. Unlike p-values, which are simply positive or null, Bayes factors are tripartite, allowing us to distinguish positive, indeterminate, and null results. Under a frequentist paradigm, null results may be truly null or may represent an underpowered study, and differentiating the two can be highly nontrivial. Because of this, no conclusions can be made in general from null results from a frequentist trial.

In contrast, Bayes factors naturally allow us to calculate the probability that a finding is truly negative versus indeterminate (requiring more data). This information can prove critical in determining whether to continue trials on a particular intervention (with a larger sample size) or to cease trials of said intervention all together. For these reasons, Bayesian analyses are becoming increasingly common in clinical medicine.

One useful example comes from the COVID STEROID 2 trial, which tested two different doses of dexamethasone in treating severe COVID-19 pneumonia. The study reported a null primary outcome, which was interpreted as null. A Bayesian reanalysis concluded that the probability of any benefit of the higher dose was 95%, that of clinically important benefit was 62%, and that of clinically important harm was 0.2%. Although not conflicting with the original frequentist study, this reanalysis offers a more complete clinically informative picture of the data.

Other examples include the ANDROMEDA-SHOCK trial and a trial of Extra-Corporeal Membrane Oxygenation versus conventional ventilation, each of which initially reported inconclusive primary outcomes with frequentist analyses, yet Bayesian reanalysis demonstrated high probability of benefit in each. Each of these examples illustrates the usefulness of Bayesian
Bayesian reanalysis of psilocybin vs. escitalopram

Bayesian linear regression models were performed with all four depression scales used as outcome measures in the trial at 6 weeks: the QIDS SR-16, the 17-item Hamilton Depression Rating Scale (HAMD-17), the Montgomery and Åsberg Depression Rating Scale (MADRS), and the Beck Depression Inventory 1A (BDI-1A). All models took the following form, similar to the original analysis:

\[
\text{SCALE}_{FU} = \beta_C \times \text{Condition} + \beta_{BL} \times \text{SCALE}_{BL} + \nu,
\]

where \(\text{SCALE}_{BL}\) and \(\text{SCALE}_{FU}\) are the values of a given scale at baseline and final follow-up, \(\beta_C\) and \(\beta_{BL}\) are the coefficients of a linear relationship between \(\text{SCALE}_{BL}\) and condition (psilocybin or escitalopram group) as predictors of \(\text{SCALE}_{FU}\), and \(\nu\) is the residual of the regression. Put simply, the outcome variable was the follow-up score for each scale at 6 weeks, whereas condition and baseline depression scale score were used as independent variables.

Bayesian regression models need to specify prior distributions for their coefficients—in our case, for \(\beta_C\) and \(\beta_{BL}\). For each outcome measure, two variants of the model were assessed that differed in the definition of their priors: a flat prior variant (which approximates frequentist methods) and a skeptical prior variant (which shrinks estimates closer to 0). Flat priors posit that any effect size is possible, and simply allow each parameter to take any value with uniform prior probability. Flat priors often produce results equivalent to frequentist approaches.

Skeptical priors instead posit that large effect sizes are unlikely. The skeptical priors were tuned such that the 95% highest density interval of the prior predictive distribution for group difference spans the magnitude of benchmark values for “very much improved.” In other words, this prior constrains effect sizes to be within a range that is considered clinically possible, and penalizes effects that are large. This skeptical prior signifies a belief that there is likely no group difference. Skeptical priors hence shrink estimates toward zero and are more conservative than flat priors and typical frequentist methods. Full details of these priors are available in the Supplementary Data.

For constructing the skeptical priors, the following benchmark values for “very much improved” were used. These criteria are based on values previously identified in the literature: QIDS 75% change from baseline.
HAMD-17 78% change from baseline, after averaging values from several citations\(^{14-17}\); and MADRS 82% change from baseline.\(^{18}\) Finally, for BDI-1A, a 75% change from baseline was considered “very much improved,” following the benchmarks used for the other measures, since benchmark values of “very much improved” were not readily available in the literature for this scale.

Posterior distributions of depression scale scores were calculated for both psilocybin (COMPASS Pathways proprietary synthetic psilocybin, COMP360”) and escitalopram at the final follow-up (6-week timepoint), and the posterior distribution of their difference was calculated by subtracting one distribution from the other—yielding the “posterior group difference.” This posterior distribution can be summarized by its median value and by the upper and lower limits of the credible interval, which contains a given percentage (often 95%) of the posterior density.

Note that frequentist confidence intervals are often misinterpreted as denoting the probability that the interval contains the true value of a parameter of interest, or as capturing the number of times the true value would lie within the given interval if the study were run multiple times.\(^{19}\) In contrast, the Bayesian credible interval can be interpreted more simply: given the data and the model, there is, for example, 95% probability that the true value lies within the interval.

Using the posterior group differences, the probabilities that psilocybin had (1) any superiority, (2) clinically meaningful superiority, and (3) noninferiority (NI) to escitalopram were calculated by taking the percentage of the posterior distribution (1) >0, (2) the MCID, and (3) the NI margin, respectively.

The MCID and NI margins were taken from the literature. The following values were used for MCID: QIDS 28.5% group difference,\(^{14}\) HAMD-17 4 points,\(^{20}\) MADRS 4.5 points,\(^{20}\) and BDI-1A 29.64% group difference.\(^{21}\) The following NI margins were used: QIDS –0.3 standardized difference from control,\(^{22,23}\) MADRS –2.5 points,\(^{24,25}\) and HAMD-17 –2.5 points.\(^{26,27}\) As NI margins were not readily available in the literature for BDI-1A, a conservative margin of –1 point was chosen.

All analyses were performed in R version 4.1.\(^{28}\) independently by two authors (S.M.N. and B.A.B.) to ensure similar results. Model parameters were estimated using Hamiltonian Markov Chain Monte Carlo simulations using both \textit{brms}\(^{29}\) and \textit{rethinking}\(^{13}\) packages, which are wrappers for the probabilistic programming language \textit{Stan}. Analysis scripts are available at (https://osf.io/vfw7g/). Models were run with 4 chains and 2000 warm-up iterations, the default settings of the \textit{brms} package.

Consent was not required for this reanalysis of previously collected data.

Bayes factors

We computed Bayes factors for two sets of hypotheses: that psilocybin outperforms escitalopram (1) by any amount and (2) by at least the MCID. Bayes factors comparing a specific H\(_1\) ("experimental" hypothesis) with H\(_0\) ("null" hypothesis) quantify the degree of evidence for H\(_1\) versus H\(_0\). For a given prior and posterior distribution, this Bayes factor (henceforth BF\(_{10}\)) can distinguish between null results and underpowered results—a useful property that is not possible with p-values.

For the hypothesis that psilocybin outperforms escitalopram by any amount, the experimental hypothesis is that the group difference is >0, whereas the null is that the group difference is 0. Mathematically:

\[
\text{diff} = \text{SCALE}_{\text{fu}}^{\text{comp}} - \text{SCALE}_{\text{fu}}^{\text{psil}},
\]

\[
H_1 : \text{diff} > 0,
\]

\[
H_0 : \text{diff} = 0.
\]

To calculate BF\(_{10}\), we take advantage of the following relationship:

\[
\frac{P(H_1|D)}{P(H_0|D)} = \frac{P(D|H_1)}{P(D|H_0)} \times \frac{P(H_1)}{P(H_0)},
\]

where the first term is the posterior odds, second term is the Bayes factor, and third term is the prior odds. We calculate the Bayes factor by dividing the posterior odds by the prior odds:

\[
\text{BF}_{10} = \frac{P(D|H_1)}{P(D|H_0)} = \frac{P(H_1|D)}{P(H_0|D)} \times \frac{P(H_1)}{P(H_0)}.
\]

The prior odds can be interpreted as “the odds of H\(_1\) before seeing the data,” and the posterior odds can be interpreted as “the odds of H\(_1\) after seeing the data.” Greater values of the prior and posterior odds reflect greater plausibility of H\(_1\) under those distributions.

BF\(_{10}\) is the ratio of these odds, where numbers >1 indicate more plausibility for H\(_1\) after seeing the data, and numbers between 0 and 1 indicate more plausibility for H\(_0\). For example, a BF\(_{10}\) of 5 means the data are five times more likely under H\(_1\) than under H\(_0\).

Using common convention, values of BF\(_{10}\) in the range 3–10 indicate moderate evidence, values in the range of 10–30 indicate strong evidence, values in the range of 30–100 indicate very strong, and values in the range >100 indicate extremely strong evidence for H\(_1\).\(^{30}\) These values can be inverted and interpreted similarly as evidence for H\(_0\): a BF\(_{10}\) of 1/3–1/10 can be interpreted as strong evidence for H\(_0\) with strength of evidence increasing as numbers approach 0. BF\(_{10}\) from 0.5 to 2 is usually considered to be indeterminate, requiring more evidence.
For the hypothesis that psilocybin is greater than escitalopram by a clinically meaningful amount (MCID), the following experimental and null hypotheses were used:

\[H_1 : \text{diff} > \text{MCID} \quad H_0 : \text{MCID} \leq \text{diff} \leq \text{MCID}. \]

Bayes factors were also computed for NI, using the following experimental and null hypotheses relative to the NI margin:

\[H_1 : \text{diff} > \text{NI} \quad H_0 : \text{diff} < \text{NI}. \]

Prior sensitivity analysis
To ensure that results were not excessively impacted by the choice of priors, sensitivity analyses were performed using two additional sets of priors, in which the 95% highest density interval of the prior predictive distribution for group difference spanned 50% and 150% of the MCID. Further details about this procedure are available in the Supplementary Data.

Patient and public involvement
There was no patient nor public involvement in the design of this reanalysis.

Results
16-item Quick Inventory of Depressive Symptomatology–Self-Report
The median [95% CI] for the QIDS SR-16 group difference under a skeptical prior was 2.0 [−0.8 to 5.0] in favor of psilocybin, with a 92.0% probability for any positive effect and a 5.4% probability for a clinically meaningful difference. The Bayes factor for any positive effect was 1.2, indicating indeterminate evidence, which implies that the data are insufficient with respect to this question. The Bayes factor for a clinically meaningful difference was 0.14, indicating moderate evidence for the null of no clinically meaningful difference.

17-Item Hamilton Depression Rating Scale
The median [95% CI] for the HAMD-17 group difference under a skeptical prior was 5.3 [2.6–8.0] in favor of psilocybin, with a >99.99% probability for any positive effect and an 81.7% probability for a clinically meaningful difference. The Bayes factor for any positive effect was 363, indicating extremely strong evidence. The Bayes factor for a clinically meaningful difference was 6.1, indicating moderate evidence for a clinically meaningful difference.

Montgomery and Åsberg Depression Rating Scale
The median [95% CI] for the MADRS group difference under a skeptical prior was 7.0 [2.3–11.6] in favor of psilocybin, with a 99.7% probability for any positive effect and a 36.5% probability for a clinically meaningful difference. The Bayes factor for any positive effect was 25, indicating strong evidence. The Bayes factor for a clinically meaningful difference was 1.3, indicating indeterminate evidence.

Beck Depression Inventory 1A
The median [95% CI] for the BDI-1A group difference under a skeptical prior was 7.0 [1.6–12.2] in favor of psilocybin, with a 99.4% probability for any positive effect and a 28.7% probability for a clinically meaningful difference. The Bayes factor for any positive effect was 12.6, indicating strong evidence, whereas the Bayes factor for a clinically meaningful difference was 1.0, indicating indeterminate evidence.

The probabilities (Bayes factor) for NI were QIDS: 99.67% (197), HAMD-17: >99.99% (infinite), MADRS: 99.98% (2831), and BDI-1A: 99.78% (398).

Sensitivity analyses using different priors did not substantially alter these results. Details of these analyses are available in the Supplementary Data.

Estimates for all four depression scales under skeptical and flat (not shown in text) priors are available in Table 1. Bayes factors for hypotheses of any superiority, clinically meaningful superiority, and NI are given in Table 2.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Any superiority</th>
<th>Clinically meaningful superiority</th>
<th>Noninferiority</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIDS SR-16</td>
<td>1.2</td>
<td>0.14</td>
<td>197</td>
</tr>
<tr>
<td>HAMD-17</td>
<td>363</td>
<td>6.1</td>
<td>Infinite</td>
</tr>
<tr>
<td>MADRS</td>
<td>25</td>
<td>1.3</td>
<td>2831</td>
</tr>
<tr>
<td>BDI-1A</td>
<td>12.6</td>
<td>1.0</td>
<td>398</td>
</tr>
</tbody>
</table>

Values of BF_{10} in the range 3–10 indicate moderate evidence, values in the range 10–30 indicate strong evidence, values in the range 30–100 indicate very strong, and values >100 indicate extremely strong evidence for the experimental hypothesis \(H_1 \). Values of BF_{10} in the range 0.33–0.1 can be interpreted as strong evidence for \(H_0 \) with strength of evidence increasing as numbers approach 0. Values of BF_{10} from 0.5 to 2 are usually considered to be indeterminate, requiring more evidence. Clinically meaningful superiority refers to a group difference greater than the minimally clinically important difference.
Figure 1 shows the posterior distributions of group difference for all four scales under skeptical priors.

Discussion

This study presents a Bayesian reanalysis of a recently published study comparing psilocybin with escitalopram for the treatment of depression. Of the four depression scales included in this study, one failed to find a significant between-condition difference (QIDS SR-16) under the original frequentist analysis, whereas the remaining three found a significant difference in favor of psilocybin (BDI-1A, MADRS, HAMD-17). As the QIDS SR-16 was the predetermined primary outcome, the trial was considered indeterminate overall.

The Bayesian reanalysis presented here provides further insight into this trial’s data, enabling clearer inferences to be made on them, and suggestions for future studies. Specifically, the results of the presented reanalysis suggest that psilocybin did indeed outperform escitalopram in this trial, but not to an extent that was clinically meaningful—whereas clarifying that more data are needed before these conclusions can be adopted with high confidence. In addition, results also support that psilocybin is almost certainly noninferior to escitalopram, as administered in this study. This Bayesian approach better allows full use of the available data in comparison with the frequentist approach.

Null hypothesis significance testing in the standard Neymann–Pearson methodology asks how probable the data are assuming H_0 is true, and is blind to the experimental hypothesis, H_1. Such a method can, therefore, not estimate the probability of H_0, or any other hypothesis. Alternatively, Bayesian methods can quantify the evidence for specific alternative and null hypotheses in intuitive probabilistic terms. This allows more direct answers to questions relevant to clinicians (e.g., “what is psilocybin’s effect on depression, how likely is that effect, and how certain can we be about it?”) rather than a mere dichotomous answer.

The current analysis investigated three hypotheses. For the hypothesis of any amount of superiority of psilocybin, there is indeterminate evidence (QIDS SR-16), strong evidence for H_1 (BDI-1A and MADRS), and extremely strong evidence for H_1 (HAMD-17). For the hypothesis that psilocybin is superior by a clinically meaningful amount, there is moderate evidence for H_0 (QIDS SR-16), indeterminate evidence (BDI-1A and MADRS), and moderate evidence for H_1 (HAMD-17). For all scales, there is extremely strong evidence for NI of psilocybin with respect to escitalopram.
Taken together, we can conclude that in this study population, psilocybin is probably superior to escitalopram, but not to a degree that is clinically meaningful, and that psilocybin is almost certainly noninferior to escitalopram. Although none of these conclusions conflicts with the results of the original article, they are much more informative and nuanced than the conclusions of frequentist analysis. Notably, psilocybin’s adverse effects tended to be limited to the 24 h after the dosing sessions, in contrast to escitalopram. Thus, even if psilocybin were noninferior but not superior to escitalopram, it may have a more favorable risk–benefit ratio.

In Carhart-Harris et al, the primary outcome measure (QIDS SR-16) yielded a nonsignificant result, whereas psilocybin was superior in every contrast using secondary efficacy outcome measures (including HAMD-17, MADRS, and BDI-1A). Nevertheless, frequentist conventions required this be reported as a null trial (i.e., that “the primary outcome is indeterminate and the secondary outcomes uninterpretable”). As a thought experiment, imagine an alternative plausible outcome: the primary outcome significantly favored psilocybin and yet every secondary outcome was null. Although such results could be reported as proof of psilocybin’s superiority over escitalopram, we suspect many readers would be skeptical of this interpretation—suspecting it to be a false positive.

Under a Bayesian analysis, the individual scales continue to offer contrasting evidence. For example, for the hypothesis of clinically meaningful superiority of psilocybin, there is moderate evidence against (i.e., H0) according to the QIDS SR-16, whereas there is moderate evidence for (H1) according to the HAMD. Future study could be done to address the relative strengths and weaknesses of the depressive symptom severity rating scales used in this trial, which may further aid our abilities to draw inferences on this trial’s results and also may contribute to the design of future trials.

However, a Bayesian reanalysis with skeptical priors allows us to analyze the findings from each of the scales in their totality. This provides a more informative picture of the results of the trial by considering all of the available data while remaining robust to problems resulting from multiple comparisons.

Bayesian methods have been critiqued as unnecessarily subjective, given the need for a prior distribution. We view this argument as a red herring, as frequentist clinical trials typically use substantial prior information in the design of the trial, particularly in estimating the number of subjects that must be enrolled to avoid an underpowered result. In addition, some frequentist methods are equivalent to Bayesian inference with uniform priors, demonstrating that priors are implicitly a feature of frequentism. The implicit flat prior distributions that characterize frequentist analyses are often inappropriate statistically (causing problems with model convergence) and logically (rendering extreme effect sizes as probable as small ones).

Bayesian principles extend far beyond inference performed at the end of data collection, offering important advantages in the design of clinical trials. In powering a trial, frequentist methods typically establish a fixed sample size based on a prior assumption of effect size, which is often uncertain. If a null result is obtained, it can be unclear whether the result is truly null or underpowered, despite best attempts at collecting an appropriate number of subjects. Sequential designs are possible, and occasionally used, though this requires a rigid design with prespecified looks at the data.

A more flexible and intuitive approach is a Bayesian sequential trial. A Bayesian sequential trial might, for example, target a specified strength of evidence (applicable to H1 or H0) using Bayes factors, and continue collecting participants until that strength of evidence is reached. This method can not only allow continued data collection if results are indeterminate, but also permits ending trials earlier with lower sample sizes when effects are larger than expected. Had the original study taken this approach, data collection could have continued until the evidence for QIDS SR-16 was no longer indeterminate.

Equally, a trial can be terminated early if there is sufficient evidence of no benefit (i.e., in support of H0), which is often not possible with standard frequentist design. Bayesian sequential design also obviates problems related to findings that are statistically significant but not clinically significant, as the choice of H1 can be a clinically meaningful difference.

Overall, this article illustrates several of the advantages of Bayesian methods for the design and analysis of clinical trials. First, specific alternative and null hypotheses can be clearly specified as the subject of the analysis. The evidence for these hypotheses can be presented in intuitive probabilistic terms, or through Bayes factors that provide a quantitative assessment about the strength of one hypothesis over another. When there is limited prior information to go on, as in the case of a psilocybin trial directed at a novel therapeutic indication, Bayesian sequential trials allow a more flexible trial design that may on average save resources while remaining rigorous and principled. Given these advantages, we believe Bayesian methods deserve greater use in psychedelic clinical trials in particular and clinical trials in general.

Acknowledgments
We thank Allan Blemings for assistance in understanding the original analysis and Richard McElreath for his excellent Bayesian textbook, *Statistical Rethinking*.
Authors’ Contributions
S.M.N. contributed to conceptualization, formal analysis, methodology, software, visualization, writing—original draft, and writing—review and editing. B.A.B. was involved in conceptualization, formal analysis, methodology, visualization, validation, and writing—review and editing. D.B.Y. carried out conceptualization and writing—review and editing. M.J.S. took charge of writing—review and editing and conceptualization. F.E.R. carried out writing—review and editing. J.M.P. was involved in data curation, writing—review and editing. B.G. carried out investigation, project administration, and writing—review and editing. D.J.N. was in charge of investigation, project administration, resources, supervision, and writing—review and editing.

Author Disclosure Statement
R.C.-H. reports receiving consulting fees or stock options from Journey Collab, Entheon Biomedical, Beckley Psytech, Mydecine, Tryp Therapeutics, and Maya Health; B.G. reports receiving consulting fees from Small Pharma Ltd; D.E. received consulting fees from Field Trip and Mydecine; and D.J.N. received consulting fees from Algerton, H. Lundbeck and Beckley Psytech, advisory board fees from COMPASS Pathways and lecture fees from Takeda and Otsuka and Janssen, plus owns stock in Alcarelle, Awakn, and Psyched Wellness. The other authors declare no competing interests.

Funding Information
Support for S.M.N. and D.B.Y. through the Johns Hopkins Center for Psychedelic and Consciousness Research was provided by Tim Ferriss, Matt Mullenweg, Blake Mycoskie, Craig Nerenberg, and the Steven and Alexandra Cohen Foundation. Support for B.A.B. comes from NIMH grant R25MH094612. R.C.-H. is the Ralph Metzner Chair of the Psychedelic Division, Neuroscapes at University of California San Francisco.

Supplementary Material
Supplementary Data

References

